Bayesian Goodness of Fit Tests: A Conversation for David Mumford

P. Diaconis, Guanyang Wang
{"title":"Bayesian Goodness of Fit Tests: A Conversation for David Mumford","authors":"P. Diaconis, Guanyang Wang","doi":"10.4310/AMSA.2018.v3.n1.a9","DOIUrl":null,"url":null,"abstract":"The problem of making practical, useful goodness of fit tests in the Bayesian paradigm is largely open. We introduce a class of special cases (testing for uniformity: have the cards been shuffled enough; does my random generator work) and a class of sensible Bayes tests inspired by Mumford, Wu and Zhu. Calculating these tests presents the challenge of 'doubly intractable distributions'. In present circumstances, modern MCMC techniques are up to the challenge. But many other problems remain. Our paper is didactic, we hope to induce the reader to help take it further.","PeriodicalId":186390,"journal":{"name":"arXiv: Methodology","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/AMSA.2018.v3.n1.a9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The problem of making practical, useful goodness of fit tests in the Bayesian paradigm is largely open. We introduce a class of special cases (testing for uniformity: have the cards been shuffled enough; does my random generator work) and a class of sensible Bayes tests inspired by Mumford, Wu and Zhu. Calculating these tests presents the challenge of 'doubly intractable distributions'. In present circumstances, modern MCMC techniques are up to the challenge. But many other problems remain. Our paper is didactic, we hope to induce the reader to help take it further.
贝叶斯拟合优度检验:David Mumford的对话
在贝叶斯范式中进行实际、有用的拟合优度检验的问题在很大程度上是开放的。我们引入了一类特殊情况(均匀性检验):是否洗牌足够;我的随机生成器工作)和一类明智的贝叶斯测试,灵感来自Mumford, Wu和Zhu。计算这些测试提出了“双重棘手分布”的挑战。在目前的情况下,现代MCMC技术可以应对这一挑战。但还有许多其他问题。我们的论文是说教性的,我们希望能引导读者进一步了解它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信