An efficient heuristic-based evolutionary algorithm for solving constraint satisfaction problems

V. Tam, Peter James Stuckey
{"title":"An efficient heuristic-based evolutionary algorithm for solving constraint satisfaction problems","authors":"V. Tam, Peter James Stuckey","doi":"10.1109/IJSIS.1998.685421","DOIUrl":null,"url":null,"abstract":"GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.","PeriodicalId":289764,"journal":{"name":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJSIS.1998.685421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

GENET and EGENET are artificial neural networks with remarkable success in solving hard constraint satisfaction problems (CSPs) such as car sequencing problems. (E)GENET uses the min-conflict heuristic in variable updating to find local minima, and then applies heuristic learning rule(s) to escape the local minima not representing solution(s). In this paper we describe a micro-genetic algorithm (MGA) which generalizes the (E)GENET approach for solving CSPs efficiently. Our proposed MGA integrates the min-conflict heuristic into mutation for reassigning allels (values) to genes (variables). In addition, we derive two methods, based on general principles from evolutionary algorithms, for escaping local minima: population based learning, and look forward. Our preliminary experimental results showed that this evolutionary approach improved on EGENET in solving certain hard instances of CSPs.
一种求解约束满足问题的高效启发式进化算法
GENET和EGENET是人工神经网络,在解决汽车排序等硬约束满足问题(csp)方面取得了显著的成功。(E)GENET在变量更新中使用最小冲突启发式方法寻找局部最小值,然后应用启发式学习规则来逃避不代表解的局部最小值。本文描述了一种微遗传算法(MGA),它将(E)GENET方法推广到求解csp问题。我们提出的MGA将最小冲突启发式算法集成到突变中,用于将等位基因(值)重新分配给基因(变量)。此外,基于进化算法的一般原理,我们推导了两种逃避局部最小值的方法:基于种群的学习,并展望了未来。我们的初步实验结果表明,这种进化方法在解决某些csp的困难实例时改进了EGENET。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信