Computational Intelligence

Y. Yeo
{"title":"Computational Intelligence","authors":"Y. Yeo","doi":"10.1201/9781003090601-11","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.","PeriodicalId":309745,"journal":{"name":"Chemical Engineering Computation with MATLAB®","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Computation with MATLAB®","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781003090601-11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a novel approach to assist students with dyslexia, ADHD, and short attention span in digesting any text-based information more efficiently. The proposed solution utilizes the Multilayer Perceptron (MLP) algorithm for complex text processing and summarization tasks. The tool leverages the T5 (Text-to-Text Transfer Transformer) model from Hugging Face, which treats every NLP task as a text generation task. The model is fine-tuned on specific tasks using a smaller dataset. The NLTK's Punkt Sentence Tokenizer is used to divide a text into a list of sentences. The application is served using Flask, a lightweight web server and framework. The tool also applies principles from Bionic Reading to enhance readability, which includes a bolding function and adjustments to line, word, and character spacing. The paper discusses the methodology, implementation, and results of the AI-based speed reading tool.
计算智能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信