Tuning optimal traffic measurement parameters in virtual networks with machine learning

Karyna Gogunska, C. Barakat, G. Urvoy-Keller
{"title":"Tuning optimal traffic measurement parameters in virtual networks with machine learning","authors":"Karyna Gogunska, C. Barakat, G. Urvoy-Keller","doi":"10.1109/CloudNet47604.2019.9064132","DOIUrl":null,"url":null,"abstract":"With the increasing popularity of cloud networking and the widespread usage of virtualization, it becomes more and more complex to monitor this new virtual environment. Yet, monitoring remains crucial for network troubleshooting and analysis. Controlling the measurement footprint in the virtual network is one of the main priorities in the process of monitoring as resources are shared between the compute nodes of tenants and the measurement process itself. In this paper, first, we assess the capability of machine learning to predict measurement impact on the ongoing traffic between virtual machines; second, we propose a data-driven solution that is able to provide optimal monitoring parameters for virtual network measurement with minimum traffic interference.","PeriodicalId":340890,"journal":{"name":"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet47604.2019.9064132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing popularity of cloud networking and the widespread usage of virtualization, it becomes more and more complex to monitor this new virtual environment. Yet, monitoring remains crucial for network troubleshooting and analysis. Controlling the measurement footprint in the virtual network is one of the main priorities in the process of monitoring as resources are shared between the compute nodes of tenants and the measurement process itself. In this paper, first, we assess the capability of machine learning to predict measurement impact on the ongoing traffic between virtual machines; second, we propose a data-driven solution that is able to provide optimal monitoring parameters for virtual network measurement with minimum traffic interference.
利用机器学习优化虚拟网络流量测量参数
随着云网络的日益普及和虚拟化的广泛使用,监控这种新的虚拟环境变得越来越复杂。然而,监控对于网络故障排除和分析仍然至关重要。由于资源在租户的计算节点和度量过程本身之间共享,因此控制虚拟网络中的度量占用是监视过程中的主要优先事项之一。在本文中,我们首先评估了机器学习预测测量对虚拟机之间正在进行的流量的影响的能力;其次,我们提出了一个数据驱动的解决方案,能够在最小的流量干扰下为虚拟网络测量提供最佳的监控参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信