Financial prediction using modified probabilistic learning network with embedded local linear models

T. Jan, T. Yu, J. Debenham, S. Simoff
{"title":"Financial prediction using modified probabilistic learning network with embedded local linear models","authors":"T. Jan, T. Yu, J. Debenham, S. Simoff","doi":"10.1109/CIMSA.2004.1397236","DOIUrl":null,"url":null,"abstract":"In this paper, a model is proposed which combines multiple local linear models with a novel modified probabilistic neural network (MPNN). The proposed model is shown to provide improved regularization with reduced computation utilizing semiparametric model approach and efficient vector quantization of data space. In this paper, the proposed model is shown to generalize better with reduced variance and model complexity in short-term financial prediction application.","PeriodicalId":102405,"journal":{"name":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference onComputational Intelligence for Measurement Systems and Applications, 2004. CIMSA.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSA.2004.1397236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper, a model is proposed which combines multiple local linear models with a novel modified probabilistic neural network (MPNN). The proposed model is shown to provide improved regularization with reduced computation utilizing semiparametric model approach and efficient vector quantization of data space. In this paper, the proposed model is shown to generalize better with reduced variance and model complexity in short-term financial prediction application.
基于嵌入局部线性模型的改进概率学习网络的金融预测
本文提出了一种将多个局部线性模型与一种新的改进概率神经网络(MPNN)相结合的模型。该模型利用半参数模型方法和有效的数据空间矢量量化,改进了正则化,减少了计算量。本文在短期财务预测应用中表明,该模型具有较好的泛化效果,降低了方差和模型复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信