Improving open-domain event schema discovery with casual english normalization for noisy text

Assia Mezhar, A. Mzabi, M. Ramdani
{"title":"Improving open-domain event schema discovery with casual english normalization for noisy text","authors":"Assia Mezhar, A. Mzabi, M. Ramdani","doi":"10.1109/INTELLISYS.2017.8324323","DOIUrl":null,"url":null,"abstract":"Social media enable people to share significant events from their daily life. Social data mining evolves the challenge of dealing with casual language extraction due to the unstructured social media content: social media users often prefer communicating unconventionally with informal language using abbreviations, slang, misspelled words, or non-standard short-forms. Thereby, this paper proposes a new open-domain event schema discovery approach using casual language normalization to normalize, extract events and discover their adequate schemas (event types and argument roles) from noisy corpus. The proposed approach exploits casual language normalization to improve both tasks of event schema discovery and event extraction. This approach can automatically normalize and generate high-quality schemas from the extracted events with unknown types. The introduced approach promises better results in terms of accuracy and quality of the discovered schemas.","PeriodicalId":131825,"journal":{"name":"2017 Intelligent Systems Conference (IntelliSys)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Intelligent Systems Conference (IntelliSys)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELLISYS.2017.8324323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Social media enable people to share significant events from their daily life. Social data mining evolves the challenge of dealing with casual language extraction due to the unstructured social media content: social media users often prefer communicating unconventionally with informal language using abbreviations, slang, misspelled words, or non-standard short-forms. Thereby, this paper proposes a new open-domain event schema discovery approach using casual language normalization to normalize, extract events and discover their adequate schemas (event types and argument roles) from noisy corpus. The proposed approach exploits casual language normalization to improve both tasks of event schema discovery and event extraction. This approach can automatically normalize and generate high-quality schemas from the extracted events with unknown types. The introduced approach promises better results in terms of accuracy and quality of the discovered schemas.
改进开放域事件模式发现的随机英语规范化噪声文本
社交媒体使人们能够分享日常生活中的重大事件。由于非结构化的社交媒体内容,社交数据挖掘带来了处理随意语言提取的挑战:社交媒体用户通常更喜欢使用缩写、俚语、拼写错误的单词或非标准的缩略形式进行非常规的非正式语言交流。因此,本文提出了一种新的开放域事件模式发现方法,利用随机语言规范化从噪声语料库中对事件进行规范化、提取事件并发现其适当的模式(事件类型和参数角色)。该方法利用随机语言规范化来改进事件模式发现和事件提取任务。这种方法可以从提取的未知类型的事件中自动规范化并生成高质量的模式。所引入的方法在发现模式的准确性和质量方面保证了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信