Hybrid MPI/OpenMP implementation of PCA

Dalia S. Ibrahim, Salma Hamdy
{"title":"Hybrid MPI/OpenMP implementation of PCA","authors":"Dalia S. Ibrahim, Salma Hamdy","doi":"10.1109/INTELCIS.2017.8260048","DOIUrl":null,"url":null,"abstract":"Most surveillance systems depend on fully automated face recognition applications. The main concern is achieving high accuracy in real time. Principle Component Analysis algorithm is used for reducing the number of variables and getting the maximum variance between low dimensional data. The proposed approaches focus on data partitioning to minimize the execution time of the algorithm by distributing data over a cluster with parallel computing architecture. The first approach achieves 2975X and 102X relatively faster than the sequential implementation in the training and recognition phases, respectively. However, the second approach achieves 74X relatively faster than the sequential implementation in the recognition phase.","PeriodicalId":321315,"journal":{"name":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELCIS.2017.8260048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Most surveillance systems depend on fully automated face recognition applications. The main concern is achieving high accuracy in real time. Principle Component Analysis algorithm is used for reducing the number of variables and getting the maximum variance between low dimensional data. The proposed approaches focus on data partitioning to minimize the execution time of the algorithm by distributing data over a cluster with parallel computing architecture. The first approach achieves 2975X and 102X relatively faster than the sequential implementation in the training and recognition phases, respectively. However, the second approach achieves 74X relatively faster than the sequential implementation in the recognition phase.
PCA的混合MPI/OpenMP实现
大多数监控系统依赖于全自动人脸识别应用程序。主要关注的是实现实时的高精度。主成分分析算法用于减少变量的数量,获得低维数据之间的最大方差。本文提出的方法侧重于数据分区,通过将数据分布在具有并行计算架构的集群上来最小化算法的执行时间。第一种方法在训练阶段和识别阶段分别比顺序实现的方法相对快2975X和102X。然而,第二种方法在识别阶段比顺序实现相对快74X。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信