Casey M. Fontana, S. Arwade, D. DeGroot, Spencer T Hallowell, C. Aubeny, B. Diaz, Melissa E. Landon, S. Ozmutlu, A. Myers
{"title":"Force Dynamics and Stationkeeping Costs for Multiline Anchor Systems in Floating Wind Farms With Different Spatial Parameters","authors":"Casey M. Fontana, S. Arwade, D. DeGroot, Spencer T Hallowell, C. Aubeny, B. Diaz, Melissa E. Landon, S. Ozmutlu, A. Myers","doi":"10.1115/omae2019-96395","DOIUrl":null,"url":null,"abstract":"\n While the offshore wind industry has shown a steady trend towards floating turbines, costs of these systems remain high. A multiline anchor concept may significantly reduce the high cost of floating wind, in which floating turbines share anchors. This work investigates the potential cost benefit of implementing a multiline anchor system relative to the conventional single-line anchor system over a range of spatial parameters. The OC4 DeepCwind semisubmersible platform is used to design catenary mooring systems for different water depths and turbine spacings. In all cases, the maximum anchor force in the 3-line anchor system is less than or equal to that of the single-line anchor system. Cost models for the mooring lines, anchors, installation and geotechnical site investigation are presented and discussed. In a 100-turbine farm, the multiline anchor system results in a 9–19% reduction in stationkeeping costs, with high and low estimates for the cost models additionally included. Larger reductions in the combined line and anchor cost result from mooring system configurations with smaller ratios of water depth to turbine spacing. Due to perimeter effects in the multiline configuration, larger cost reductions can be achieved for larger farm sizes.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2019-96395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
While the offshore wind industry has shown a steady trend towards floating turbines, costs of these systems remain high. A multiline anchor concept may significantly reduce the high cost of floating wind, in which floating turbines share anchors. This work investigates the potential cost benefit of implementing a multiline anchor system relative to the conventional single-line anchor system over a range of spatial parameters. The OC4 DeepCwind semisubmersible platform is used to design catenary mooring systems for different water depths and turbine spacings. In all cases, the maximum anchor force in the 3-line anchor system is less than or equal to that of the single-line anchor system. Cost models for the mooring lines, anchors, installation and geotechnical site investigation are presented and discussed. In a 100-turbine farm, the multiline anchor system results in a 9–19% reduction in stationkeeping costs, with high and low estimates for the cost models additionally included. Larger reductions in the combined line and anchor cost result from mooring system configurations with smaller ratios of water depth to turbine spacing. Due to perimeter effects in the multiline configuration, larger cost reductions can be achieved for larger farm sizes.