Machine learning algorithms for real time arrhythmias detection in portable cardiac devices: microcontroller implementation and comparative analysis

S. Rúa, S. Zuluaga, A. Redondo, A. Orozco-Duque, J. Restrepo, J. Bustamante
{"title":"Machine learning algorithms for real time arrhythmias detection in portable cardiac devices: microcontroller implementation and comparative analysis","authors":"S. Rúa, S. Zuluaga, A. Redondo, A. Orozco-Duque, J. Restrepo, J. Bustamante","doi":"10.1109/STSIVA.2012.6340556","DOIUrl":null,"url":null,"abstract":"This paper presents the development of two machine learning algorithms on a 32-bit ARM® Cortex® M4 microcontroller core from Freescale Semiconductors. A neural network (ANN) and a support vector machine (SVM) were implemented for real time detection of ventricular tachycardia (VT) and ventricular fibrillation (VF), and they were compared in terms of accuracy. In the feature extraction step a Fast Wavelet Transform (FWT) was used; which was analyzed using the time-frequency characteristics of energy in each sub-band frequency. For the training and validation algorithms, signals from MIT-BIH database with normal sinus rhythm, VF and VT in a time window of 2 seconds were used. Validation results achieve test accuracy of 99.46% by ANN and SVM in VT/VF detection.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents the development of two machine learning algorithms on a 32-bit ARM® Cortex® M4 microcontroller core from Freescale Semiconductors. A neural network (ANN) and a support vector machine (SVM) were implemented for real time detection of ventricular tachycardia (VT) and ventricular fibrillation (VF), and they were compared in terms of accuracy. In the feature extraction step a Fast Wavelet Transform (FWT) was used; which was analyzed using the time-frequency characteristics of energy in each sub-band frequency. For the training and validation algorithms, signals from MIT-BIH database with normal sinus rhythm, VF and VT in a time window of 2 seconds were used. Validation results achieve test accuracy of 99.46% by ANN and SVM in VT/VF detection.
便携式心脏设备中实时心律失常检测的机器学习算法:微控制器实现和比较分析
本文介绍了在飞思卡尔半导体的32位ARM®Cortex®M4微控制器内核上开发的两种机器学习算法。采用神经网络(ANN)和支持向量机(SVM)对室性心动过速(VT)和心室颤动(VF)进行实时检测,并对两者的准确率进行比较。在特征提取步骤中,采用快速小波变换(FWT);利用各子带频率能量的时频特性对其进行了分析。对于训练和验证算法,使用来自MIT-BIH数据库的正常窦性心律、VF和VT在2秒时间窗口内的信号。验证结果表明,神经网络和支持向量机在VT/VF检测中的测试准确率达到99.46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信