Unsupervised Video Prediction Network with Spatio-temporal Deep Features

Beibei Jin, Rong Zhou, Zhisheng Zhang, Min Dai
{"title":"Unsupervised Video Prediction Network with Spatio-temporal Deep Features","authors":"Beibei Jin, Rong Zhou, Zhisheng Zhang, Min Dai","doi":"10.1109/M2VIP.2018.8600864","DOIUrl":null,"url":null,"abstract":"Predicting the future states of things is an important performance form of intelligence and it is also of vital importance in real-time systems such as autonomous cars and robotics. This paper aims to tackle a video prediction task. Previous methods for future frame prediction are always subject to restrictions from environment, leading to poor accuracy and blurry prediction details. In this work, we present an unsupervised video prediction framework which iteratively anticipates the raw RGB pixel values in future video frames. Extensive experiments are implemented on advanced datasets — KTH and KITTI. The results demonstrate that our method achieves a good performance.","PeriodicalId":365579,"journal":{"name":"2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/M2VIP.2018.8600864","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the future states of things is an important performance form of intelligence and it is also of vital importance in real-time systems such as autonomous cars and robotics. This paper aims to tackle a video prediction task. Previous methods for future frame prediction are always subject to restrictions from environment, leading to poor accuracy and blurry prediction details. In this work, we present an unsupervised video prediction framework which iteratively anticipates the raw RGB pixel values in future video frames. Extensive experiments are implemented on advanced datasets — KTH and KITTI. The results demonstrate that our method achieves a good performance.
基于时空深度特征的无监督视频预测网络
预测事物的未来状态是智能的一种重要表现形式,在自动驾驶汽车和机器人等实时系统中也至关重要。本文旨在解决一个视频预测任务。以往的未来帧预测方法往往受到环境的限制,导致预测精度差,预测细节模糊。在这项工作中,我们提出了一个无监督视频预测框架,迭代地预测未来视频帧中的原始RGB像素值。在先进的数据集KTH和KITTI上进行了广泛的实验。结果表明,该方法取得了良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信