Algorithms for bounded-error correlation of high dimensional data in microarray experiments

Mehmet Koyutürk, A. Grama, W. Szpankowski
{"title":"Algorithms for bounded-error correlation of high dimensional data in microarray experiments","authors":"Mehmet Koyutürk, A. Grama, W. Szpankowski","doi":"10.1109/CSB.2003.1227412","DOIUrl":null,"url":null,"abstract":"The problem of clustering continuous valued data has been well studied in literature. Its application to microarray analysis relies on such algorithms as k-means, dimensionality reduction techniques, and graph-based approaches for building dendrograms of sample data. In contrast, similar problems for discrete-attributed data are relatively unexplored. An instance of analysis of discrete-attributed data arises in detecting co-regulated samples in microarrays. In this paper, we present an algorithm and a software framework, PROXIMUS, for error-bounded clustering of high-dimensional discrete attributed datasets in the context of extracting co-regulated samples from microarray data. We show that PROXIMUS delivers outstanding performance in extracting accurate patterns of gene-expression.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The problem of clustering continuous valued data has been well studied in literature. Its application to microarray analysis relies on such algorithms as k-means, dimensionality reduction techniques, and graph-based approaches for building dendrograms of sample data. In contrast, similar problems for discrete-attributed data are relatively unexplored. An instance of analysis of discrete-attributed data arises in detecting co-regulated samples in microarrays. In this paper, we present an algorithm and a software framework, PROXIMUS, for error-bounded clustering of high-dimensional discrete attributed datasets in the context of extracting co-regulated samples from microarray data. We show that PROXIMUS delivers outstanding performance in extracting accurate patterns of gene-expression.
微阵列实验中高维数据的有界误差相关算法
连续值数据的聚类问题已经在文献中得到了很好的研究。它在微阵列分析中的应用依赖于k-means算法、降维技术和基于图的方法来构建样本数据的树形图。相比之下,离散属性数据的类似问题相对未被探索。分析离散属性数据的一个实例出现在检测微阵列中的共调节样品。在本文中,我们提出了一种算法和软件框架PROXIMUS,用于从微阵列数据中提取共调节样本的高维离散属性数据集的错误有界聚类。我们表明,PROXIMUS在提取准确的基因表达模式方面提供了出色的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信