Selective chunking — Easy and effective way to estimate text similarity

Tomás Kucecka, D. Chudá, P. Samuhel
{"title":"Selective chunking — Easy and effective way to estimate text similarity","authors":"Tomás Kucecka, D. Chudá, P. Samuhel","doi":"10.1109/CINTI.2013.6705226","DOIUrl":null,"url":null,"abstract":"Plagiarism is a serious problem especially in academic environment. Basically we define this problem as a theft of stealing somebody else's work or ideas. In this paper we focus on plagiarism in a domain of student assignments written in natural language. We propose an approach that should faster and better identify copied fragments of text data than standard approaches. We first identify topic related pairs of text documents and then select those pairs on further processing that discuss similar topic. We experimented with usage of different chunking methods in the comparison process to overcome typical problems as shorter fragments of text copied from other documents. The results show that our approach is more suitable for plagiarism detection as a standard n-gram method.","PeriodicalId":439949,"journal":{"name":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Symposium on Computational Intelligence and Informatics (CINTI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINTI.2013.6705226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plagiarism is a serious problem especially in academic environment. Basically we define this problem as a theft of stealing somebody else's work or ideas. In this paper we focus on plagiarism in a domain of student assignments written in natural language. We propose an approach that should faster and better identify copied fragments of text data than standard approaches. We first identify topic related pairs of text documents and then select those pairs on further processing that discuss similar topic. We experimented with usage of different chunking methods in the comparison process to overcome typical problems as shorter fragments of text copied from other documents. The results show that our approach is more suitable for plagiarism detection as a standard n-gram method.
选择性分块——简单有效的估计文本相似度的方法
剽窃是一个严重的问题,尤其是在学术环境中。基本上,我们将这个问题定义为窃取他人的工作或想法。在这篇论文中,我们将重点放在学生自然语言作业领域的抄袭问题上。我们提出了一种比标准方法更快更好地识别文本数据复制片段的方法。我们首先确定与主题相关的文本文档对,然后在进一步处理中选择讨论类似主题的文本文档对。我们在比较过程中尝试使用不同的分块方法来克服典型的问题,如从其他文档复制的较短的文本片段。结果表明,我们的方法更适合作为标准n-gram方法进行抄袭检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信