A novel pipeline for motif discovery, pruning and validation in promoter sequences of human tissue specific genes

X. Gong, Hua Yu, F. Zhao
{"title":"A novel pipeline for motif discovery, pruning and validation in promoter sequences of human tissue specific genes","authors":"X. Gong, Hua Yu, F. Zhao","doi":"10.1109/ISB.2012.6314111","DOIUrl":null,"url":null,"abstract":"Identification and analysis of tissue-specific (TS) genes and their regulatory activities play an important role in the understanding of mechanisms of organisms, disease diagnosis and drug design. In this paper, we designed a pipeline for the discovery of promoter motifs for tissue-specific genes. The pipeline consists of three phases: motif searching, motif merging and motif validation. The motif searching phase integrated three algorithms: MEME, AlignACE and Gibbs Sampling. In the second phase, we proposed a motif merging method, which is based on Bayesian probabilistic principles, to reduce redundancies of motifs from the first phase. Lastly, the motif validation phase verified the statistical significance of discovered motifs using a Bayesian Hypothesis Test approach. We performed the analysis on the sequences of promoter regions (-449bp-1000bp) of 4,552 human tissue-specific genes across 82 tissues and 924 housekeeping genes. The distributions of motifs in different promoter regions show that most motifs prefer to be in the proximal region (+500~50bp, -50bp~-500bp) of promoters.","PeriodicalId":224011,"journal":{"name":"2012 IEEE 6th International Conference on Systems Biology (ISB)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 6th International Conference on Systems Biology (ISB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISB.2012.6314111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Identification and analysis of tissue-specific (TS) genes and their regulatory activities play an important role in the understanding of mechanisms of organisms, disease diagnosis and drug design. In this paper, we designed a pipeline for the discovery of promoter motifs for tissue-specific genes. The pipeline consists of three phases: motif searching, motif merging and motif validation. The motif searching phase integrated three algorithms: MEME, AlignACE and Gibbs Sampling. In the second phase, we proposed a motif merging method, which is based on Bayesian probabilistic principles, to reduce redundancies of motifs from the first phase. Lastly, the motif validation phase verified the statistical significance of discovered motifs using a Bayesian Hypothesis Test approach. We performed the analysis on the sequences of promoter regions (-449bp-1000bp) of 4,552 human tissue-specific genes across 82 tissues and 924 housekeeping genes. The distributions of motifs in different promoter regions show that most motifs prefer to be in the proximal region (+500~50bp, -50bp~-500bp) of promoters.
一个新的管道motif发现,修剪和验证启动子序列的人类组织特异性基因
组织特异性(TS)基因的鉴定和分析及其调控活性在了解生物体机制、疾病诊断和药物设计方面发挥着重要作用。在本文中,我们设计了一个管道来发现组织特异性基因的启动子基序。该流程包括三个阶段:基序搜索、基序合并和基序验证。motif搜索阶段集成了三种算法:MEME、AlignACE和Gibbs Sampling。在第二阶段,我们提出了一种基于贝叶斯概率原理的基序合并方法,以减少第一阶段的基序冗余。最后,基序验证阶段使用贝叶斯假设检验方法验证发现的基序的统计显著性。我们对82个组织中4,552个人类组织特异性基因和924个管家基因的启动子区(-449bp-1000bp)序列进行了分析。基序在不同启动子区域的分布表明,大多数基序倾向于在启动子的近端区域(+500~50bp, -50bp~-500bp)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信