Comparing MFCC and MPEG-7 audio features for feature extraction, maximum likelihood HMM and entropic prior HMM for sports audio classification

Ziyou Xiong, R. Radhakrishnan, Ajay Divakaran, Thomas S. Huang
{"title":"Comparing MFCC and MPEG-7 audio features for feature extraction, maximum likelihood HMM and entropic prior HMM for sports audio classification","authors":"Ziyou Xiong, R. Radhakrishnan, Ajay Divakaran, Thomas S. Huang","doi":"10.1109/ICASSP.2003.1200048","DOIUrl":null,"url":null,"abstract":"We present a comparison of 6 methods for classification of sports audio. For feature extraction, we have two choices: MPEG-7 audio features and Mel-scale frequency cepstrum coefficients (MFCC). For classification, we also have two choices: maximum likelihood hidden Markov models (ML-HMM) and entropic prior HMMs (EP-HMM). EP-HMMs, in turn, have two variations: with and without trimming of the model parameters. We thus have 6 possible methods, each of which corresponds to a combination. Our results show that all the combinations achieve classification accuracy of around 90% with the best and the second best being, respectively, MPEG-7 features with EP-HMM and MFCC with ML-HMM.","PeriodicalId":104473,"journal":{"name":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2003.1200048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We present a comparison of 6 methods for classification of sports audio. For feature extraction, we have two choices: MPEG-7 audio features and Mel-scale frequency cepstrum coefficients (MFCC). For classification, we also have two choices: maximum likelihood hidden Markov models (ML-HMM) and entropic prior HMMs (EP-HMM). EP-HMMs, in turn, have two variations: with and without trimming of the model parameters. We thus have 6 possible methods, each of which corresponds to a combination. Our results show that all the combinations achieve classification accuracy of around 90% with the best and the second best being, respectively, MPEG-7 features with EP-HMM and MFCC with ML-HMM.
比较MFCC和MPEG-7音频特征提取、最大似然HMM和熵先验HMM对运动音频分类的影响
本文对6种运动音频分类方法进行了比较。对于特征提取,我们有两种选择:MPEG-7音频特征和mel尺度频率倒频谱系数(MFCC)。对于分类,我们也有两种选择:最大似然隐马尔可夫模型(ML-HMM)和熵先验隐马尔可夫模型(EP-HMM)。反过来,ep - hmm有两种变化:有和没有修剪模型参数。因此,我们有6种可能的方法,每种方法对应于一个组合。我们的结果表明,所有组合的分类准确率都在90%左右,其中最好的和次好的分别是MPEG-7特征与EP-HMM和MFCC特征与ML-HMM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信