Ensuring Semantic Validity in Privacy-Preserving Aggregate Statistics

Junze Han, Taeho Jung, Xiangyang Li, Lili Du
{"title":"Ensuring Semantic Validity in Privacy-Preserving Aggregate Statistics","authors":"Junze Han, Taeho Jung, Xiangyang Li, Lili Du","doi":"10.1109/MSN.2016.034","DOIUrl":null,"url":null,"abstract":"Aggregate statistics are becoming increasingly commonplace for mobile sensing applications which crowdsources data from individual users. In order to relieve user's concerns for privacy leakage, privacy preserving mechanisms have to be applied to enable the aggregator to compute aggregate statistics without learning each individual data. Although the aggregator will not know the value of the data, it is necessary to ensure the (semantic) validity of the data contributed by users. In this work, we design a privacy-preserving protocol for an aggregator to compute corrected aggregated statistics over users' data that can both preserve user's privacy and verify the semantic validity of the data. We evaluated our protocol on real-world dataset and demonstrated the efficiency of our protocol.","PeriodicalId":135328,"journal":{"name":"2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSN.2016.034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregate statistics are becoming increasingly commonplace for mobile sensing applications which crowdsources data from individual users. In order to relieve user's concerns for privacy leakage, privacy preserving mechanisms have to be applied to enable the aggregator to compute aggregate statistics without learning each individual data. Although the aggregator will not know the value of the data, it is necessary to ensure the (semantic) validity of the data contributed by users. In this work, we design a privacy-preserving protocol for an aggregator to compute corrected aggregated statistics over users' data that can both preserve user's privacy and verify the semantic validity of the data. We evaluated our protocol on real-world dataset and demonstrated the efficiency of our protocol.
保护隐私聚合统计信息中语义有效性的保证
对于移动传感应用来说,聚合统计数据正变得越来越普遍,这些应用需要从个人用户那里获得众包数据。为了减轻用户对隐私泄露的担忧,必须应用隐私保护机制,使聚合器能够在不学习每个单独数据的情况下计算聚合统计信息。虽然聚合器不会知道数据的价值,但有必要确保用户提供的数据的(语义)有效性。在这项工作中,我们为聚合器设计了一个隐私保护协议,用于计算用户数据的正确聚合统计,既可以保护用户的隐私,又可以验证数据的语义有效性。我们在真实数据集上评估了我们的协议,并证明了我们协议的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信