K. Nagao, Keisuke Inoue, Naoya Morita, S. Matsubara
{"title":"Automatic extraction of task statements from structured meeting content","authors":"K. Nagao, Keisuke Inoue, Naoya Morita, S. Matsubara","doi":"10.5220/0005609703070315","DOIUrl":null,"url":null,"abstract":"We previously developed a discussion mining system that records face-to-face meetings in detail, analyzes their content, and conducts knowledge discovery. Looking back on past discussion content by browsing documents, such as minutes, is an effective means for conducting future activities. In meetings at which some research topics are regularly discussed, such as seminars in laboratories, the presenters are required to discuss future issues by checking urgent matters from the discussion records. We call statements including advice or requests proposed at previous meetings “task statements” and propose a method for automatically extracting them. With this method, based on certain semantic attributes and linguistic characteristics of statements, a probabilistic model is created using the maximum entropy method. A statement is judged whether it is a task statement according to its probability. A seminar-based experiment validated the effectiveness of the proposed extraction method.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005609703070315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
We previously developed a discussion mining system that records face-to-face meetings in detail, analyzes their content, and conducts knowledge discovery. Looking back on past discussion content by browsing documents, such as minutes, is an effective means for conducting future activities. In meetings at which some research topics are regularly discussed, such as seminars in laboratories, the presenters are required to discuss future issues by checking urgent matters from the discussion records. We call statements including advice or requests proposed at previous meetings “task statements” and propose a method for automatically extracting them. With this method, based on certain semantic attributes and linguistic characteristics of statements, a probabilistic model is created using the maximum entropy method. A statement is judged whether it is a task statement according to its probability. A seminar-based experiment validated the effectiveness of the proposed extraction method.