A Visual Analytics Approach for Word Relevances in Multiple Texts

Nils Rodrigues, Michael Burch, Lorenzo Di Silvestro, D. Weiskopf
{"title":"A Visual Analytics Approach for Word Relevances in Multiple Texts","authors":"Nils Rodrigues, Michael Burch, Lorenzo Di Silvestro, D. Weiskopf","doi":"10.1109/iV.2017.62","DOIUrl":null,"url":null,"abstract":"We investigate the problem of analyzing word frequencies in multiple text sources with the aim to give an overview of word-based similarities in several texts as a starting point for further analysis. To reach this goal, we designed a visual analytics approach composed of typical stages and processes, combining algorithmic analysis, visualization techniques, the human users with their perceptual abilities, as well as interaction methods for both the data analysis and the visualization component. By our algorithmic analysis, we first generate a multivariate dataset where words build the cases and the individual text sources the attributes. Real-valued relevances express the significances of each word in each of the text sources. From the visualization perspective, we describe how this multivariate dataset can be visualized to generate, confirm, rebuild, refine, or reject hypotheses with the goal to derive meaning, knowledge, and insights from several text sources. We discuss benefits and drawbacks of the visualization approaches when analyzing word relevances in multiple texts.","PeriodicalId":410876,"journal":{"name":"2017 21st International Conference Information Visualisation (IV)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 21st International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iV.2017.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the problem of analyzing word frequencies in multiple text sources with the aim to give an overview of word-based similarities in several texts as a starting point for further analysis. To reach this goal, we designed a visual analytics approach composed of typical stages and processes, combining algorithmic analysis, visualization techniques, the human users with their perceptual abilities, as well as interaction methods for both the data analysis and the visualization component. By our algorithmic analysis, we first generate a multivariate dataset where words build the cases and the individual text sources the attributes. Real-valued relevances express the significances of each word in each of the text sources. From the visualization perspective, we describe how this multivariate dataset can be visualized to generate, confirm, rebuild, refine, or reject hypotheses with the goal to derive meaning, knowledge, and insights from several text sources. We discuss benefits and drawbacks of the visualization approaches when analyzing word relevances in multiple texts.
多文本中词相关性的可视化分析方法
我们研究了在多个文本源中分析词频的问题,目的是概述几个文本中基于词的相似性,作为进一步分析的起点。为了实现这一目标,我们设计了一种由典型阶段和过程组成的可视化分析方法,将算法分析、可视化技术、具有感知能力的人类用户以及数据分析和可视化组件的交互方法结合起来。通过我们的算法分析,我们首先生成一个多变量数据集,其中单词构建案例,单个文本源构建属性。实值相关性表示每个文本源中每个单词的重要性。从可视化的角度来看,我们描述了如何将这个多变量数据集可视化,以生成、确认、重建、改进或拒绝假设,目的是从多个文本源中获得意义、知识和见解。我们讨论了可视化方法在分析多个文本中的词相关性时的优点和缺点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信