{"title":"When Trust Saves Energy: A Reference Framework for Proof of Trust (PoT) Blockchains","authors":"Leila Bahri, Sarunas Girdzijauskas","doi":"10.1145/3184558.3191553","DOIUrl":null,"url":null,"abstract":"Blockchains are attracting the attention of many technical, financial, and industrial parties, as a promising infrastructure for achieving secure peer-to-peer (P2P) transactional systems. At the heart of blockchains is proof-of-work (PoW), a trustless leader election mechanism based on demonstration of computational power. PoW provides blockchain security in trusless P2P environments, but comes at the expense of wasting huge amounts of energy. In this research work, we question this energy expenditure of PoW under blockchain use cases where some form of trust exists between the peers. We propose a Proof-of-Trust (PoT) blockchain where peer trust is valuated in the network based on a trust graph that emerges in a decentralized fashion and that is encoded in and managed by the blockchain itself. This trust is then used as a waiver for the difficulty of PoW; that is, the more trust you prove in the network, the less work you do.","PeriodicalId":235572,"journal":{"name":"Companion Proceedings of the The Web Conference 2018","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Companion Proceedings of the The Web Conference 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3184558.3191553","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29
Abstract
Blockchains are attracting the attention of many technical, financial, and industrial parties, as a promising infrastructure for achieving secure peer-to-peer (P2P) transactional systems. At the heart of blockchains is proof-of-work (PoW), a trustless leader election mechanism based on demonstration of computational power. PoW provides blockchain security in trusless P2P environments, but comes at the expense of wasting huge amounts of energy. In this research work, we question this energy expenditure of PoW under blockchain use cases where some form of trust exists between the peers. We propose a Proof-of-Trust (PoT) blockchain where peer trust is valuated in the network based on a trust graph that emerges in a decentralized fashion and that is encoded in and managed by the blockchain itself. This trust is then used as a waiver for the difficulty of PoW; that is, the more trust you prove in the network, the less work you do.