Value Iteration on Multicore Processors

Anuj K. Jain, S. Sahni
{"title":"Value Iteration on Multicore Processors","authors":"Anuj K. Jain, S. Sahni","doi":"10.1109/ISSPIT51521.2020.9408773","DOIUrl":null,"url":null,"abstract":"Value Iteration (VI) is a powerful, though time consuming, approach to solve reinforcement learning problems modeled as Markov Decision Processes (MDPs). In this paper, we explore strategies to run the sate-of-the-art cache efficient algorithm for VI developed by us [1], [2] on a multicore processor. We demonstrate a speedup of up to 2.59 on a 10-core multiprocessor using 20 threads on popular benchmark data. The speedup for the parallelized portion of the computation is up to 5.89.","PeriodicalId":111385,"journal":{"name":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","volume":"513 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT51521.2020.9408773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Value Iteration (VI) is a powerful, though time consuming, approach to solve reinforcement learning problems modeled as Markov Decision Processes (MDPs). In this paper, we explore strategies to run the sate-of-the-art cache efficient algorithm for VI developed by us [1], [2] on a multicore processor. We demonstrate a speedup of up to 2.59 on a 10-core multiprocessor using 20 threads on popular benchmark data. The speedup for the parallelized portion of the computation is up to 5.89.
多核处理器上的值迭代
值迭代(VI)是一种强大但耗时的方法,用于解决以马尔可夫决策过程(mdp)为模型的强化学习问题。在本文中,我们探讨了在多核处理器上运行由我们[1],[2]开发的最先进的VI缓存高效算法的策略。我们在流行的基准测试数据上使用20个线程,在10核多处理器上演示了高达2.59的加速。计算的并行化部分的加速高达5.89。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信