Adapting to Increasing Data Availability Using Multi-layered Self-Organising Maps

Toby Smith
{"title":"Adapting to Increasing Data Availability Using Multi-layered Self-Organising Maps","authors":"Toby Smith","doi":"10.1109/ICAIS.2009.26","DOIUrl":null,"url":null,"abstract":"Often in clustering scenarios, the data analyst does not have access to a complete data set at the outset and new data dimensions might only become available at some later time. In this case it is useful to be able to cluster the available data and have some mechanism for incorporating new dimensions as they become available without having to recluster all the data from scratch (which may not be feasible for on-line learning scenarios). This paper utilises an established mechanism for interconnecting multiple Self-Organising Maps to achieve this aim and reveals a useful way of visualising the affect of individual dimensions on the structure of clusters.","PeriodicalId":161840,"journal":{"name":"2009 International Conference on Adaptive and Intelligent Systems","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Adaptive and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIS.2009.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Often in clustering scenarios, the data analyst does not have access to a complete data set at the outset and new data dimensions might only become available at some later time. In this case it is useful to be able to cluster the available data and have some mechanism for incorporating new dimensions as they become available without having to recluster all the data from scratch (which may not be feasible for on-line learning scenarios). This paper utilises an established mechanism for interconnecting multiple Self-Organising Maps to achieve this aim and reveals a useful way of visualising the affect of individual dimensions on the structure of clusters.
使用多层自组织地图适应不断增加的数据可用性
通常在集群场景中,数据分析师在开始时无法访问完整的数据集,新的数据维度可能只是在稍后的时间才可用。在这种情况下,能够对可用数据进行聚类,并拥有一些机制,以便在新维度可用时合并新维度,而不必从头开始对所有数据重新聚类(这对于在线学习场景可能不可行)。本文利用一种已建立的机制来连接多个自组织地图来实现这一目标,并揭示了一种可视化单个维度对集群结构的影响的有用方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信