Combined Classification for Extracting Named Entities from Arabic Texts

Fériel Ben Fraj Trabelsi, C. Ben Othmane Zribi, Wiem Kouki
{"title":"Combined Classification for Extracting Named Entities from Arabic Texts","authors":"Fériel Ben Fraj Trabelsi, C. Ben Othmane Zribi, Wiem Kouki","doi":"10.1109/ACLING.2015.15","DOIUrl":null,"url":null,"abstract":"In this paper, we describe an approach for extracting named entities from Arabic texts. Arabic language is hard to process since its characteristics that influence, even, the NE extraction. For our case, we consider that the named entities extraction can be assimilated to a typical classification problem. Indeed, this extraction consists of searching for text portions that can be classified in a NE class (Person, Locality or Organization). Thus, we choose to use a supervised learning approach and employ the BIO tagging format that can solve the twin problems of segmentation and categorization. In addition, singular classifier cannot give good results for all types of contexts. Thus, we adopt a set of weighted classifiers which we combined through a voting procedure. In order to appreciate properly the performance of our system, we perform two types of tests: with and without morphological attributes. We consider that the results are highly satisfactory especially with a accuracy that exceeds 89% for both Person and Locality classes.","PeriodicalId":404268,"journal":{"name":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACLING.2015.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe an approach for extracting named entities from Arabic texts. Arabic language is hard to process since its characteristics that influence, even, the NE extraction. For our case, we consider that the named entities extraction can be assimilated to a typical classification problem. Indeed, this extraction consists of searching for text portions that can be classified in a NE class (Person, Locality or Organization). Thus, we choose to use a supervised learning approach and employ the BIO tagging format that can solve the twin problems of segmentation and categorization. In addition, singular classifier cannot give good results for all types of contexts. Thus, we adopt a set of weighted classifiers which we combined through a voting procedure. In order to appreciate properly the performance of our system, we perform two types of tests: with and without morphological attributes. We consider that the results are highly satisfactory especially with a accuracy that exceeds 89% for both Person and Locality classes.
从阿拉伯文本中提取命名实体的组合分类
在本文中,我们描述了一种从阿拉伯文本中提取命名实体的方法。阿拉伯语很难处理,因为它的特点甚至影响到NE的提取。对于我们的案例,我们认为命名实体的提取可以被同化为一个典型的分类问题。实际上,这种提取包括搜索可以在NE类(Person, Locality或Organization)中分类的文本部分。因此,我们选择使用监督学习方法,并采用可以解决分词和分类双重问题的BIO标记格式。此外,奇异分类器不能对所有类型的上下文都给出很好的结果。因此,我们采用一组加权分类器,我们通过投票程序组合。为了正确评估系统的性能,我们执行了两种类型的测试:带形态属性和不带形态属性。我们认为结果非常令人满意,特别是Person和Locality类的准确率都超过89%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信