Effective XML Classification Using Content and Structural Information via Rule Learning

G. Costa, R. Ortale, E. Ritacco
{"title":"Effective XML Classification Using Content and Structural Information via Rule Learning","authors":"G. Costa, R. Ortale, E. Ritacco","doi":"10.1109/ICTAI.2011.24","DOIUrl":null,"url":null,"abstract":"We propose a new approach to XML classification, that uses a particular rule-learning technique for the induction of interpretable classification models. These separate the individual classes of XML documents by looking at the presence within the XML documents themselves of certain features, that provide information on their content and structure. The devised approach induces classifiers with outperforming effectiveness in comparison to several established competitors.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

We propose a new approach to XML classification, that uses a particular rule-learning technique for the induction of interpretable classification models. These separate the individual classes of XML documents by looking at the presence within the XML documents themselves of certain features, that provide information on their content and structure. The devised approach induces classifiers with outperforming effectiveness in comparison to several established competitors.
通过规则学习使用内容和结构信息的有效XML分类
我们提出了一种新的XML分类方法,它使用一种特殊的规则学习技术来归纳可解释的分类模型。这些方法通过查看XML文档本身中存在的某些特性(这些特性提供有关其内容和结构的信息)来区分XML文档的各个类。与几个已建立的竞争对手相比,设计的方法诱导分类器具有优异的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信