Control of convergence in a computational fluid dynamic simulation using fuzzy logic

Xunliang Liu, W. Tao, P. Zheng, Ya-Ling He, Qiuwan Wang
{"title":"Control of convergence in a computational fluid dynamic simulation using fuzzy logic","authors":"Xunliang Liu, W. Tao, P. Zheng, Ya-Ling He, Qiuwan Wang","doi":"10.1360/02YE9057","DOIUrl":null,"url":null,"abstract":"A fuzzy control method was used to accelerate iteration convergence in numerical fluid dynamic simulation using SIMPLER algorithm. The residual ratio of momentum or energy equation between two successive iterations was used as the input variable. A fuzzy logic algorithm was developed in order to obtain the relative increment of the under-relaxation factor and its new value was then used for the next iteration. The algorithm was tested by four benchmark problems. In all cases considered, when the fuzzy control logic was used, convergence was achieved with nearly the minimum number of iterations, showing the feasibility of the proposed method.","PeriodicalId":119807,"journal":{"name":"Science in China Series E: Technological Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2002-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science in China Series E: Technological Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/02YE9057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

A fuzzy control method was used to accelerate iteration convergence in numerical fluid dynamic simulation using SIMPLER algorithm. The residual ratio of momentum or energy equation between two successive iterations was used as the input variable. A fuzzy logic algorithm was developed in order to obtain the relative increment of the under-relaxation factor and its new value was then used for the next iteration. The algorithm was tested by four benchmark problems. In all cases considered, when the fuzzy control logic was used, convergence was achieved with nearly the minimum number of iterations, showing the feasibility of the proposed method.
用模糊逻辑控制计算流体动力学仿真的收敛性
在数值流体动力学仿真中,采用模糊控制方法加快迭代收敛速度,简化了算法。采用两次连续迭代之间的动量或能量的剩余比方程作为输入变量。提出了一种模糊逻辑算法,以获得欠松弛因子的相对增量,并将其新值用于下一次迭代。通过四个基准问题对算法进行了测试。在所有考虑的情况下,当使用模糊控制逻辑时,几乎以最少的迭代次数实现了收敛,表明了所提方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信