{"title":"Fully-polymeric NEM relay for flexible, transparent, ultra-low power electronics and sensors","authors":"Yanbiao Pan, Fangzhou Yu, Jaeseok Jeon Rutgers","doi":"10.1109/MEMSYS.2015.7051115","DOIUrl":null,"url":null,"abstract":"A fully-polymeric nano-electro-mechanical (NEM) relay based on a conductive polymer, Poly(3,4-Ethylenedi oxythiophene):Polystyrene-Sulfonate (PEDOT:PSS) and dielectric polymers is proposed for the first time to enable flexible, transparent, ultralow-power electronics and sensors, and the first functional prototype fabricated using a five-mask low-thermal-budget process is demonstrated. The prototype shows zero off-state leakage current, abrupt on/off switching, complementary switching behavior, and relatively high on/off current ratio. Exploiting the water-absorption behavior of the polymers, the potential use of the relay as a biochemical sensor is also demonstrated.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"440 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7051115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
A fully-polymeric nano-electro-mechanical (NEM) relay based on a conductive polymer, Poly(3,4-Ethylenedi oxythiophene):Polystyrene-Sulfonate (PEDOT:PSS) and dielectric polymers is proposed for the first time to enable flexible, transparent, ultralow-power electronics and sensors, and the first functional prototype fabricated using a five-mask low-thermal-budget process is demonstrated. The prototype shows zero off-state leakage current, abrupt on/off switching, complementary switching behavior, and relatively high on/off current ratio. Exploiting the water-absorption behavior of the polymers, the potential use of the relay as a biochemical sensor is also demonstrated.