PSO hybrid intelligent inverse optimal control for an anaerobic process

K. J. Gurubel, E. Sánchez, S. Carlos-Hernandez, Fernando Ornelas
{"title":"PSO hybrid intelligent inverse optimal control for an anaerobic process","authors":"K. J. Gurubel, E. Sánchez, S. Carlos-Hernandez, Fernando Ornelas","doi":"10.1109/CEC.2013.6557660","DOIUrl":null,"url":null,"abstract":"This paper proposes a hybrid intelligent inverse optimal control for trajectory tracking based on a neural observer and a fuzzy supervisor for an anaerobic digestion process, in order to maximize methane production. A nonlinear discrete-time recurrent high order neural observer (RHONO) is used to estimate biomass concentration and substrate degradation in a continuous stirred tank reactor. The control law calculates dilution rate and bicarbonate supply, and a Takagi-Sugeno supervisor based on the estimation of biomass, selects and applies the most adequate control action, allowing a smooth switching between open loop and closed loop. A Particle Swarm Optimization (PSO) algorithm is employed to determine the matrix P for inverse optimal control in order to improve tracking results. The applicability of the proposed scheme is illustrated via simulations.","PeriodicalId":211988,"journal":{"name":"2013 IEEE Congress on Evolutionary Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2013.6557660","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper proposes a hybrid intelligent inverse optimal control for trajectory tracking based on a neural observer and a fuzzy supervisor for an anaerobic digestion process, in order to maximize methane production. A nonlinear discrete-time recurrent high order neural observer (RHONO) is used to estimate biomass concentration and substrate degradation in a continuous stirred tank reactor. The control law calculates dilution rate and bicarbonate supply, and a Takagi-Sugeno supervisor based on the estimation of biomass, selects and applies the most adequate control action, allowing a smooth switching between open loop and closed loop. A Particle Swarm Optimization (PSO) algorithm is employed to determine the matrix P for inverse optimal control in order to improve tracking results. The applicability of the proposed scheme is illustrated via simulations.
厌氧过程的粒子群混合智能逆最优控制
针对厌氧消化过程,提出了一种基于神经观测器和模糊监督器的混合轨迹跟踪智能逆最优控制,以实现甲烷产量最大化。采用非线性离散时间递归高阶神经观测器(RHONO)来估计连续搅拌槽式反应器中生物质浓度和底物降解情况。控制律计算稀释率和碳酸氢盐供应,Takagi-Sugeno监督员根据生物量的估计,选择并应用最适当的控制动作,允许在开环和闭环之间平滑切换。为了提高跟踪效果,采用粒子群优化算法确定逆最优控制的矩阵P。通过仿真验证了该方案的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信