Prakiraan Beban Puncak Pada Transformator GITET 150 kV Kesugihan Cilacap Menggunakan Jaringan Syaraf Tiruan Multilayer Feedforward Dengan Algoritma Backpropagation

Dimas Aditia Dicki, W. Winarso
{"title":"Prakiraan Beban Puncak Pada Transformator GITET 150 kV Kesugihan Cilacap Menggunakan Jaringan Syaraf Tiruan Multilayer Feedforward Dengan Algoritma Backpropagation","authors":"Dimas Aditia Dicki, W. Winarso","doi":"10.30595/pspfs.v1i.127","DOIUrl":null,"url":null,"abstract":"The increasing population and the growth of the industrial world, offices, hotels, and modern markets must be directly proportional to Indonesia's availability of electrical energy. The availability of sufficient electrical energy can affect the quality of life of the people and foster investor confidence in our country. Studies on the prediction (estimation) of peak electrical loads in electricity in Indonesia can be carried out using the Artificial Neural Network (ANN) method. The estimation of electricity load for the next 5 years is strongly influenced by several parameters, including population growth and peak load data of 150 kV GITET, Kesugihan Cilacap. This study took population data and peak load data at GITET 150 KV Kesugihan Cilacap in the past 5 years. The data used in this study were actual data, starting from 2015 to 2019. To display the results of the estimated electrical load on the 150 kV GITET transformer, the authors used the artificial neural network method. The peak electrical loads estimation results using artificial neural networks for electricity loads in the next 5 years, to wit from 2020 - 2024. The estimated peak load in Lomanis District is20.0311 MW, 24.443 MW, 19.9707 MW, 19.9705 MW and 19, 9705 MW. In Gombong District, the estimated peak load is 57,398 MW, 57,472 MW, 57,476 MW, 57,474 MW, and 57,479 MW.","PeriodicalId":165554,"journal":{"name":"Proceedings Series on Physical & Formal Sciences","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Series on Physical & Formal Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30595/pspfs.v1i.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing population and the growth of the industrial world, offices, hotels, and modern markets must be directly proportional to Indonesia's availability of electrical energy. The availability of sufficient electrical energy can affect the quality of life of the people and foster investor confidence in our country. Studies on the prediction (estimation) of peak electrical loads in electricity in Indonesia can be carried out using the Artificial Neural Network (ANN) method. The estimation of electricity load for the next 5 years is strongly influenced by several parameters, including population growth and peak load data of 150 kV GITET, Kesugihan Cilacap. This study took population data and peak load data at GITET 150 KV Kesugihan Cilacap in the past 5 years. The data used in this study were actual data, starting from 2015 to 2019. To display the results of the estimated electrical load on the 150 kV GITET transformer, the authors used the artificial neural network method. The peak electrical loads estimation results using artificial neural networks for electricity loads in the next 5 years, to wit from 2020 - 2024. The estimated peak load in Lomanis District is20.0311 MW, 24.443 MW, 19.9707 MW, 19.9705 MW and 19, 9705 MW. In Gombong District, the estimated peak load is 57,398 MW, 57,472 MW, 57,476 MW, 57,474 MW, and 57,479 MW.
不断增长的人口和工业世界、办公室、酒店和现代市场的增长必须与印度尼西亚的电力供应成正比。能否获得充足的电能,可以影响人民的生活质量,增强投资者对我国的信心。利用人工神经网络(ANN)方法对印尼电力负荷峰值进行预测(估计)研究。未来5年的电力负荷估计受人口增长和150kv GITET, Kesugihan Cilacap的峰值负荷数据等几个参数的强烈影响。本研究采集了150 KV克苏吉汉水电站近5年的人口数据和峰值负荷数据。本研究使用的数据为实际数据,起始时间为2015年至2019年。采用人工神经网络的方法,对150 kV瞬态变压变压器的负荷进行了估计。利用人工神经网络对未来5年(即2020 - 2024年)的电力负荷峰值进行了预测。Lomanis地区的估计峰值负荷分别为20.0311兆瓦、24.443兆瓦、19.9707兆瓦、19.9705兆瓦和19.9705兆瓦。在贡峰地区,预计峰值负荷为57398兆瓦、57472兆瓦、57476兆瓦、57474兆瓦、57479兆瓦。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信