Cofinitely Goldie*-Supplemented Modules

Ayşe Tuğba Güroğlu
{"title":"Cofinitely Goldie*-Supplemented Modules","authors":"Ayşe Tuğba Güroğlu","doi":"10.53570/jnt.1260505","DOIUrl":null,"url":null,"abstract":"One of the generalizations of supplemented modules is the Goldie*-supplemented module, defined by Birkenmeier et al. using $\\beta^{\\ast}$ relation. In this work, we deal with the concept of the cofinitely Goldie*-supplemented modules as a version of Goldie*-supplemented module. A left $R$-module $M$ is called a cofinitely Goldie*-supplemented module if there is a supplement submodule $S$ of $M$ with $C\\beta^{\\ast}S$, for each cofinite submodule $C$ of $M$. Evidently, Goldie*-supplemented are cofinitely Goldie*-supplemented. Further, if $M$ is cofinitely Goldie*-supplemented, then $M/C$ is cofinitely Goldie*-supplemented, for any submodule $C$ of $M$. If $A$ and $B$ are cofinitely Goldie*-supplemented with $M=A\\oplus B$, then $M$ is cofinitely Goldie*-supplemented. Additionally, we investigate some properties of the cofinitely Goldie*-supplemented module and compare this module with supplemented and Goldie*-supplemented modules.","PeriodicalId":347850,"journal":{"name":"Journal of New Theory","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of New Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53570/jnt.1260505","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the generalizations of supplemented modules is the Goldie*-supplemented module, defined by Birkenmeier et al. using $\beta^{\ast}$ relation. In this work, we deal with the concept of the cofinitely Goldie*-supplemented modules as a version of Goldie*-supplemented module. A left $R$-module $M$ is called a cofinitely Goldie*-supplemented module if there is a supplement submodule $S$ of $M$ with $C\beta^{\ast}S$, for each cofinite submodule $C$ of $M$. Evidently, Goldie*-supplemented are cofinitely Goldie*-supplemented. Further, if $M$ is cofinitely Goldie*-supplemented, then $M/C$ is cofinitely Goldie*-supplemented, for any submodule $C$ of $M$. If $A$ and $B$ are cofinitely Goldie*-supplemented with $M=A\oplus B$, then $M$ is cofinitely Goldie*-supplemented. Additionally, we investigate some properties of the cofinitely Goldie*-supplemented module and compare this module with supplemented and Goldie*-supplemented modules.
补充模块的一种概括是Goldie*-补充模块,由Birkenmeier等人使用 $\beta^{\ast}$ 关系。在这项工作中,我们将有限Goldie*补充模块的概念作为Goldie*补充模块的一个版本来处理。A左 $R$-模块 $M$ 如果存在补充子模块,则称为有限Goldie*补充模块 $S$ 的 $M$ 有 $C\beta^{\ast}S$,对于每个有限子模块 $C$ 的 $M$. 显然,Goldie*补充是有限的Goldie*补充。更进一步,如果 $M$ 是有限的Goldie*,那么 $M/C$ 是有限的Goldie*-补充,对于任何子模块 $C$ 的 $M$. 如果 $A$ 和 $B$ 是有限的Goldie*-补充 $M=A\oplus B$那么, $M$ 是有限的Goldie*补充。此外,我们还研究了有限Goldie*补充模块的一些性质,并将该模块与补充模块和Goldie*补充模块进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信