On effective approximation to quadratic numbers

Y. Bugeaud
{"title":"On effective approximation to quadratic numbers","authors":"Y. Bugeaud","doi":"10.32817/ams.2.6","DOIUrl":null,"url":null,"abstract":"Let p be a prime number and | · |p the p-adic absolute value on Q and on the p-adic field Qp normalized such that |p|p = p −1 . Let ξ be a quadratic real number and α a quadratic p-adic number. We prove that there exist positive, effectively computable, real numbers c1 = c1(ξ), τ1 = τ1(ξ), c2 = c2(α), τ2 = τ2(α), such that |yξ − x| · |y|p ≥ c1|y| −2+τ1 , for x, y ∈ Z̸=0, and |bα − a|p ≥ c2|ab| −2+τ2 , for a, b ∈ Z̸=0. Both results improve the effective lower bounds which follow from an easy Liouville-type argument.","PeriodicalId":309225,"journal":{"name":"Acta mathematica Spalatensia","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta mathematica Spalatensia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32817/ams.2.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let p be a prime number and | · |p the p-adic absolute value on Q and on the p-adic field Qp normalized such that |p|p = p −1 . Let ξ be a quadratic real number and α a quadratic p-adic number. We prove that there exist positive, effectively computable, real numbers c1 = c1(ξ), τ1 = τ1(ξ), c2 = c2(α), τ2 = τ2(α), such that |yξ − x| · |y|p ≥ c1|y| −2+τ1 , for x, y ∈ Z̸=0, and |bα − a|p ≥ c2|ab| −2+τ2 , for a, b ∈ Z̸=0. Both results improve the effective lower bounds which follow from an easy Liouville-type argument.
二次数的有效逼近
设p为素数,且|·|p为Q和p进域Qp上归一化使|p|p = p−1的p进绝对值。设ξ为二次实数,α为二次p进数。我们证明了存在正的、有效可计算的实数c1 = c1(ξ), τ1 = τ1(ξ), c2 = c2(α), τ2 = τ2(α),使得对于x, y∈Z ε =0,以及对于a, b∈Z ε =0, |bα α−a|p≥c2|ab|−2+τ2,∈yξ−x|·|y|p≥c1|y|−2+τ1。这两个结果都改进了由简单的liouville型论证得出的有效下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信