Critical behaviors of nonlinear contagion models with recurrent mobility patterns

Yanting Li, Xiaoqun Wu, Su Zhong, Zhenghua Huang
{"title":"Critical behaviors of nonlinear contagion models with recurrent mobility patterns","authors":"Yanting Li, Xiaoqun Wu, Su Zhong, Zhenghua Huang","doi":"10.1063/5.0155257","DOIUrl":null,"url":null,"abstract":"Recently, there has been a lot of discussion about the nonlinearity property of contagion processes in epidemic spreading on social networks with various structures. In this paper, we propose a nonlinear contagion model in networked metapopulations to investigate the critical behavior of epidemics with recurrent mobility patterns. First, we build up a discrete-time Markovian chain model to formulate the spreading of susceptible-infected-susceptible-like diseases. Additionally, we develop a practicable framework to analyze the impact of mobility on the epidemic threshold and derive the theoretical condition for the transition of an epidemic from a local to a global scale. This transition is associated with multiple discontinuous phase changes. We validate our analytical results through extensive numerical simulations on both regular and heterogeneous networks. Our findings offer a useful tool to discuss the implementation of prevention strategies such as quarantine and lockdown.","PeriodicalId":340975,"journal":{"name":"Chaos: An Interdisciplinary Journal of Nonlinear Science","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos: An Interdisciplinary Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0155257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, there has been a lot of discussion about the nonlinearity property of contagion processes in epidemic spreading on social networks with various structures. In this paper, we propose a nonlinear contagion model in networked metapopulations to investigate the critical behavior of epidemics with recurrent mobility patterns. First, we build up a discrete-time Markovian chain model to formulate the spreading of susceptible-infected-susceptible-like diseases. Additionally, we develop a practicable framework to analyze the impact of mobility on the epidemic threshold and derive the theoretical condition for the transition of an epidemic from a local to a global scale. This transition is associated with multiple discontinuous phase changes. We validate our analytical results through extensive numerical simulations on both regular and heterogeneous networks. Our findings offer a useful tool to discuss the implementation of prevention strategies such as quarantine and lockdown.
具有循环流动模式的非线性传染模型的临界行为
近年来,人们对传染病在不同结构的社会网络上传播过程的非线性特性进行了大量的讨论。在本文中,我们提出了一个网络元群体中的非线性传染模型来研究具有周期性流动模式的流行病的临界行为。首先,我们建立了一个离散时间马尔可夫链模型来描述易感-感染-类易感疾病的传播。此外,我们开发了一个实用的框架来分析流动性对流行病阈值的影响,并推导了流行病从局部尺度向全球尺度过渡的理论条件。这种转变与多个不连续的相变有关。我们通过在规则和异构网络上进行广泛的数值模拟来验证我们的分析结果。我们的研究结果为讨论隔离和封锁等预防策略的实施提供了有用的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信