Anthony J. Pinar, T. Havens, Derek T. Anderson, Lequn Hu
{"title":"Feature and decision level fusion using multiple kernel learning and fuzzy integrals","authors":"Anthony J. Pinar, T. Havens, Derek T. Anderson, Lequn Hu","doi":"10.1109/FUZZ-IEEE.2015.7337934","DOIUrl":null,"url":null,"abstract":"Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher-dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the pre-computed kernels, but determining the summation weights is not a trivial task. A popular and successful approach to this problem is MKL-group lasso (MKLGL), where the weights and classification surface are simultaneously solved by iteratively optimizing a min-max optimization until convergence. In this work, we propose an ℓp-normed genetic algorithm MKL (GAMKLp), which uses a genetic algorithm to learn the weights of a set of pre-computed kernel matrices for use with MKL classification. We prove that this approach is equivalent to a previously proposed fuzzy integral aggregation of multiple kernels called fuzzy integral: genetic algorithm (FIGA). A second algorithm, which we call decision-level fuzzy integral MKL (DeFIMKL), is also proposed, where a fuzzy measure with respect to the fuzzy Choquet integral is learned via quadratic programming, and the decision value-viz., the class label-is computed using the fuzzy Choquet integral aggregation. Experiments on several benchmark data sets show that our proposed algorithms can outperform MKLGL when applied to support vector machine (SVM)-based classification.","PeriodicalId":185191,"journal":{"name":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2015.7337934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16
Abstract
Kernel methods for classification is a well-studied area in which data are implicitly mapped from a lower-dimensional space to a higher-dimensional space to improve classification accuracy. However, for most kernel methods, one must still choose a kernel to use for the problem. Since there is, in general, no way of knowing which kernel is the best, multiple kernel learning (MKL) is a technique used to learn the aggregation of a set of valid kernels into a single (ideally) superior kernel. The aggregation can be done using weighted sums of the pre-computed kernels, but determining the summation weights is not a trivial task. A popular and successful approach to this problem is MKL-group lasso (MKLGL), where the weights and classification surface are simultaneously solved by iteratively optimizing a min-max optimization until convergence. In this work, we propose an ℓp-normed genetic algorithm MKL (GAMKLp), which uses a genetic algorithm to learn the weights of a set of pre-computed kernel matrices for use with MKL classification. We prove that this approach is equivalent to a previously proposed fuzzy integral aggregation of multiple kernels called fuzzy integral: genetic algorithm (FIGA). A second algorithm, which we call decision-level fuzzy integral MKL (DeFIMKL), is also proposed, where a fuzzy measure with respect to the fuzzy Choquet integral is learned via quadratic programming, and the decision value-viz., the class label-is computed using the fuzzy Choquet integral aggregation. Experiments on several benchmark data sets show that our proposed algorithms can outperform MKLGL when applied to support vector machine (SVM)-based classification.