Topic oriented auto-completion models: Approaches towards fastening auto-completion systems

S. Prisca, M. Dînsoreanu, C. Lemnaru
{"title":"Topic oriented auto-completion models: Approaches towards fastening auto-completion systems","authors":"S. Prisca, M. Dînsoreanu, C. Lemnaru","doi":"10.5220/0005597502410248","DOIUrl":null,"url":null,"abstract":"In this paper we propose an autocompletion approach suitable for mobile devices that aims to reduce the overall data model size and to speed up query processing while not employing any language specific processing. The approach relies on topic information from input documents to split the data models based on topics and index them in a way that allows fast identification through their corresponding topic. Doing so, the size of the data model used for prediction is decreased to almost one fifth of the size of a model that contains all topics, and the query processing becomes two times faster, while maintaining the same precision obtained by employing a model that contains all topics.","PeriodicalId":102743,"journal":{"name":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0005597502410248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we propose an autocompletion approach suitable for mobile devices that aims to reduce the overall data model size and to speed up query processing while not employing any language specific processing. The approach relies on topic information from input documents to split the data models based on topics and index them in a way that allows fast identification through their corresponding topic. Doing so, the size of the data model used for prediction is decreased to almost one fifth of the size of a model that contains all topics, and the query processing becomes two times faster, while maintaining the same precision obtained by employing a model that contains all topics.
面向主题的自动补全模型:紧固自动补全系统的方法
在本文中,我们提出了一种适用于移动设备的自动补全方法,旨在减少整体数据模型的大小并加快查询处理速度,同时不使用任何特定于语言的处理。该方法依赖于输入文档中的主题信息,根据主题拆分数据模型,并以一种允许通过相应主题快速识别的方式对其进行索引。这样,用于预测的数据模型的大小减少到几乎是包含所有主题的模型大小的五分之一,查询处理速度提高了两倍,同时保持了使用包含所有主题的模型所获得的相同精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信