{"title":"Benefits in Relaxing the Power Capping Constraint","authors":"Daniel Cesarini, Andrea Bartolini, L. Benini","doi":"10.1145/3152821.3152878","DOIUrl":null,"url":null,"abstract":"In this manuscript we evaluate the impact of HW power capping mechanisms on a real scientific application composed by parallel execution. By comparing HW capping mechanism against static frequency allocation schemes we show that a speed up can be achieved if the power constraint is enforced in average, during the application run, instead of on short time periods. RAPL, which enforces the power constraint on a few ms time scale, fails on sharing power budget between more demanding and less demanding application phases.","PeriodicalId":227417,"journal":{"name":"ANDARE '17","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANDARE '17","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152821.3152878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this manuscript we evaluate the impact of HW power capping mechanisms on a real scientific application composed by parallel execution. By comparing HW capping mechanism against static frequency allocation schemes we show that a speed up can be achieved if the power constraint is enforced in average, during the application run, instead of on short time periods. RAPL, which enforces the power constraint on a few ms time scale, fails on sharing power budget between more demanding and less demanding application phases.