Sentiment Analysis of Twitter Data: A Hybrid Approach

Ankit Srivastava, Singh Vijendra, Gurdeep Singh Drall
{"title":"Sentiment Analysis of Twitter Data: A Hybrid Approach","authors":"Ankit Srivastava, Singh Vijendra, Gurdeep Singh Drall","doi":"10.4018/IJHISI.2019040101","DOIUrl":null,"url":null,"abstract":"Over the past few years, the novel appeal and increasing popularity of social networks as a medium for users to express their opinions and views have created an accumulation of a massive amount of data. This evolving mountain of data is commonly termed Big Data. Accordingly, one area in which the application of new techniques in data mining research has significant potential to achieve more precise classification of hidden knowledge in Big Data is sentiment analysis (aka optimal mining). A hybrid approach using Naïve Bayes and Random Forest on mining Twitter datasets is presented here as an extension of previous work. Briefly, relevant data sets are collected from Twitter using Twitter API; then, use of the hybrid methodology is illustrated and evaluated against one with only Naïve Bayes classifier. Results show better accuracy and efficiency in the sentiment classification for the hybrid approach.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"198 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJHISI.2019040101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Over the past few years, the novel appeal and increasing popularity of social networks as a medium for users to express their opinions and views have created an accumulation of a massive amount of data. This evolving mountain of data is commonly termed Big Data. Accordingly, one area in which the application of new techniques in data mining research has significant potential to achieve more precise classification of hidden knowledge in Big Data is sentiment analysis (aka optimal mining). A hybrid approach using Naïve Bayes and Random Forest on mining Twitter datasets is presented here as an extension of previous work. Briefly, relevant data sets are collected from Twitter using Twitter API; then, use of the hybrid methodology is illustrated and evaluated against one with only Naïve Bayes classifier. Results show better accuracy and efficiency in the sentiment classification for the hybrid approach.
Twitter数据的情感分析:一种混合方法
在过去的几年里,社交网络作为用户表达意见和观点的媒介的新颖吸引力和日益普及创造了大量数据的积累。这种不断演变的数据山通常被称为大数据。因此,在数据挖掘研究中应用新技术具有实现大数据中隐藏知识更精确分类的巨大潜力的一个领域是情感分析(又名最优挖掘)。本文提出了一种使用Naïve贝叶斯和随机森林的混合方法来挖掘Twitter数据集,作为之前工作的扩展。简而言之,使用Twitter API从Twitter收集相关数据集;然后,说明了混合方法的使用,并对只有Naïve贝叶斯分类器的方法进行了评估。结果表明,该方法在情感分类中具有较高的准确率和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信