A corner-cutting scheme for hexagonal subdivision surfaces

J. Claes, Koen Beets, F. Reeth
{"title":"A corner-cutting scheme for hexagonal subdivision surfaces","authors":"J. Claes, Koen Beets, F. Reeth","doi":"10.1109/SMI.2002.1003523","DOIUrl":null,"url":null,"abstract":"In their paper about how the duality between subdivision surface schemes leads to higher-degree continuity, Zorin and Schroder (2001) consider only quadrilateral subdivision schemes. The dual of a quadrilateral scheme is again a quadrilateral scheme, while the dual of a triangular scheme is a hexagonal scheme. In this paper we propose such a hexagonal scheme, which can be considered a dual to Kobbelt's (2000) Sqrt(3) scheme for triangular meshes. We introduce recursive subdivision rules for meshes with arbitrary topology, optimizing the surface continuity given a minimal support area. These rules have a simplicity comparable to the Doo-Sabin scheme: only new vertices of one type are introduced and every subdivision step removes the vertices of the previous steps. As hexagonal meshes are not encountered-frequently in practice, we describe two different techniques to convert triangular meshes into hexagonal ones.","PeriodicalId":267347,"journal":{"name":"Proceedings SMI. Shape Modeling International 2002","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SMI. Shape Modeling International 2002","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMI.2002.1003523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

In their paper about how the duality between subdivision surface schemes leads to higher-degree continuity, Zorin and Schroder (2001) consider only quadrilateral subdivision schemes. The dual of a quadrilateral scheme is again a quadrilateral scheme, while the dual of a triangular scheme is a hexagonal scheme. In this paper we propose such a hexagonal scheme, which can be considered a dual to Kobbelt's (2000) Sqrt(3) scheme for triangular meshes. We introduce recursive subdivision rules for meshes with arbitrary topology, optimizing the surface continuity given a minimal support area. These rules have a simplicity comparable to the Doo-Sabin scheme: only new vertices of one type are introduced and every subdivision step removes the vertices of the previous steps. As hexagonal meshes are not encountered-frequently in practice, we describe two different techniques to convert triangular meshes into hexagonal ones.
六边形细分曲面的切角方案
在他们关于细分曲面格式之间的对偶性如何导致更高度连续性的论文中,Zorin和Schroder(2001)只考虑了四边形细分格式。四边形方案的对偶也是四边形方案,而三角形方案的对偶是六边形方案。在本文中,我们提出了这样一个六边形格式,它可以被认为是三角形网格的Kobbelt (2000) Sqrt(3)格式的对偶。我们引入了任意拓扑网格的递归细分规则,在给定最小支持面积的情况下优化表面连续性。这些规则具有与Doo-Sabin方案相当的简单性:只引入一种类型的新顶点,并且每个细分步骤都删除前一步的顶点。由于六边形网格在实践中并不常见,我们描述了两种将三角形网格转换为六边形网格的不同技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信