A Descriptive Time Series Analysis Applied to the Fit of Carbon-Dioxide (CO2)

C. Nweke, G. Mbaeyi, K. Ojide, O. Elemuche, O. Nwebe
{"title":"A Descriptive Time Series Analysis Applied to the Fit of Carbon-Dioxide (CO2)","authors":"C. Nweke, G. Mbaeyi, K. Ojide, O. Elemuche, O. Nwebe","doi":"10.18052/www.scipress.com/bmsa.21.1","DOIUrl":null,"url":null,"abstract":"The study examined the use of population spectrum in determining the nature (deterministic and stochastic) of trend and seasonal component of given time series. It also adopts the use of coefficient of variation approach in the choice of appropriate model in descriptive time series technique. Illustrations were carried out using average monthly atmospheric Carbon dioxide (C02) from 2000-2017 with 2018 used for forecast. Spectrum analysis showed that the descriptive technique of time series is more appropriate for analysis of the study data. The coefficient of variation revealed that the multiplicative model was appropriate for the CO2 data while the forecast and the actual values showed no significant mean difference at 5% level of significance.","PeriodicalId":252632,"journal":{"name":"Bulletin of Mathematical Sciences and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18052/www.scipress.com/bmsa.21.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study examined the use of population spectrum in determining the nature (deterministic and stochastic) of trend and seasonal component of given time series. It also adopts the use of coefficient of variation approach in the choice of appropriate model in descriptive time series technique. Illustrations were carried out using average monthly atmospheric Carbon dioxide (C02) from 2000-2017 with 2018 used for forecast. Spectrum analysis showed that the descriptive technique of time series is more appropriate for analysis of the study data. The coefficient of variation revealed that the multiplicative model was appropriate for the CO2 data while the forecast and the actual values showed no significant mean difference at 5% level of significance.
描述时间序列分析在二氧化碳拟合中的应用
研究考察了种群谱在确定给定时间序列的趋势和季节成分的性质(确定性和随机性)中的应用。在描述时间序列技术中,采用变异系数法选择合适的模型。插图使用2000-2017年的月平均大气二氧化碳(co2)进行,2018年用于预测。频谱分析表明,时间序列的描述技术更适合于研究数据的分析。变异系数表明,乘法模型对CO2数据的拟合性较好,预测值与实际值在5%的显著性水平上均值差异不显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信