Bounded Adversarial Attack on Deep Content Features

Qiuling Xu, Guanhong Tao, Xiangyu Zhang
{"title":"Bounded Adversarial Attack on Deep Content Features","authors":"Qiuling Xu, Guanhong Tao, Xiangyu Zhang","doi":"10.1109/CVPR52688.2022.01477","DOIUrl":null,"url":null,"abstract":"We propose a novel adversarial attack targeting content features in some deep layer, that is, individual neurons in the layer. A naive method that enforces a fixed value/percentage bound for neuron activation values can hardly work and generates very noisy samples. The reason is that the level of perceptual variation entailed by a fixed value bound is non-uniform across neurons and even for the same neuron. We hence propose a novel distribution quantile bound for activation values and a polynomial barrier loss function. Given a benign input, a fixed quantile bound is translated to many value bounds, one for each neuron, based on the distributions of the neuron's activations and the current activation value on the given input. These individualized bounds enable fine-grained regulation, allowing content feature mutations with bounded perceptional variations. Our evaluation on ImageNet and five different model architectures demonstrates that our attack is effective. Compared to seven other latest adversarial attacks in both the pixel space and the feature space, our attack can achieve the state-of-the-art trade-off between attack success rate and imperceptibility. 11Code and Samples are available on Github [37].","PeriodicalId":355552,"journal":{"name":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR52688.2022.01477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We propose a novel adversarial attack targeting content features in some deep layer, that is, individual neurons in the layer. A naive method that enforces a fixed value/percentage bound for neuron activation values can hardly work and generates very noisy samples. The reason is that the level of perceptual variation entailed by a fixed value bound is non-uniform across neurons and even for the same neuron. We hence propose a novel distribution quantile bound for activation values and a polynomial barrier loss function. Given a benign input, a fixed quantile bound is translated to many value bounds, one for each neuron, based on the distributions of the neuron's activations and the current activation value on the given input. These individualized bounds enable fine-grained regulation, allowing content feature mutations with bounded perceptional variations. Our evaluation on ImageNet and five different model architectures demonstrates that our attack is effective. Compared to seven other latest adversarial attacks in both the pixel space and the feature space, our attack can achieve the state-of-the-art trade-off between attack success rate and imperceptibility. 11Code and Samples are available on Github [37].
深度内容特征的有限对抗性攻击
我们提出了一种新的针对深层内容特征的对抗性攻击,即针对层中的单个神经元。一种对神经元激活值施加固定值/百分比界限的朴素方法很难奏效,并且会产生非常嘈杂的样本。其原因是,一个固定的值边界所带来的感知变化水平在神经元之间是不均匀的,甚至对于同一个神经元也是如此。因此,我们提出了一个新的激活值分布分位数界和一个多项式势垒损失函数。给定良性输入,根据神经元的激活分布和给定输入上的当前激活值,将固定的分位数界限转换为多个值界限,每个神经元一个值界限。这些个性化的边界实现了细粒度的调节,允许具有有限感知变化的内容特征突变。我们对ImageNet和五种不同模型架构的评估表明,我们的攻击是有效的。与其他七种最新的像素空间和特征空间的对抗性攻击相比,我们的攻击可以在攻击成功率和不可感知性之间实现最先进的权衡。代码和示例可在Github上获得[37]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信