Evolving random graph generators: A case for increased algorithmic primitive granularity

A. Pope, D. Tauritz, A. Kent
{"title":"Evolving random graph generators: A case for increased algorithmic primitive granularity","authors":"A. Pope, D. Tauritz, A. Kent","doi":"10.1109/SSCI.2016.7849929","DOIUrl":null,"url":null,"abstract":"Random graph generation techniques provide an invaluable tool for studying graph related concepts. Unfortunately, traditional random graph models tend to produce artificial representations of real-world phenomenon. Manually developing customized random graph models for every application would require an unreasonable amount of time and effort. In this work, a platform is developed to automate the production of random graph generators that are tailored to specific applications. Elements of existing random graph generation techniques are used to create a set of graph-based primitive operations. A hyper-heuristic approach is employed that uses genetic programming to automatically construct random graph generators from this set of operations. This work improves upon similar research by increasing the level of algorithmic sophistication possible with evolved solutions, allowing more accurate modeling of subtle graph characteristics. The versatility of this approach is tested against existing methods and experimental results demonstrate the potential to outperform conventional and state of the art techniques for specific applications.","PeriodicalId":120288,"journal":{"name":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI.2016.7849929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Random graph generation techniques provide an invaluable tool for studying graph related concepts. Unfortunately, traditional random graph models tend to produce artificial representations of real-world phenomenon. Manually developing customized random graph models for every application would require an unreasonable amount of time and effort. In this work, a platform is developed to automate the production of random graph generators that are tailored to specific applications. Elements of existing random graph generation techniques are used to create a set of graph-based primitive operations. A hyper-heuristic approach is employed that uses genetic programming to automatically construct random graph generators from this set of operations. This work improves upon similar research by increasing the level of algorithmic sophistication possible with evolved solutions, allowing more accurate modeling of subtle graph characteristics. The versatility of this approach is tested against existing methods and experimental results demonstrate the potential to outperform conventional and state of the art techniques for specific applications.
进化随机图生成器:增加算法原语粒度的一个例子
随机图生成技术为研究图相关概念提供了宝贵的工具。不幸的是,传统的随机图模型倾向于产生对现实世界现象的人工表示。为每个应用程序手动开发定制的随机图模型需要大量的时间和精力。在这项工作中,开发了一个平台来自动生成适合特定应用的随机图形生成器。使用现有随机图生成技术的元素来创建一组基于图的基本操作。采用一种超启发式方法,利用遗传规划从这组操作中自动构造随机图生成器。这项工作在类似研究的基础上进行了改进,通过改进的解决方案提高了算法的复杂程度,允许更准确地建模微妙的图形特征。该方法的通用性与现有方法进行了测试,实验结果表明,在特定应用中,该方法具有优于传统和最先进技术的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信