Bootstrap based nonparametric curve and confidence band estimates for spectral densities

R. Brcich, A. Zoubir
{"title":"Bootstrap based nonparametric curve and confidence band estimates for spectral densities","authors":"R. Brcich, A. Zoubir","doi":"10.1109/CAMAP.2005.1574189","DOIUrl":null,"url":null,"abstract":"We consider the problem of global bandwidth optimisation and confidence interval estimation for spectral density estimates obtained by applying a nonparametric curve estimator to the periodogram. The use of a local quadratic regression smoother is examined as a possible way to reduce the bias inherent in classical kernel spectral density estimators, which are simply local mean regression smoothers. It is found that while quadratic smoothers are much less sensitive to a poor choice of bandwidth, they do not always outperform mean smoothers.","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We consider the problem of global bandwidth optimisation and confidence interval estimation for spectral density estimates obtained by applying a nonparametric curve estimator to the periodogram. The use of a local quadratic regression smoother is examined as a possible way to reduce the bias inherent in classical kernel spectral density estimators, which are simply local mean regression smoothers. It is found that while quadratic smoothers are much less sensitive to a poor choice of bandwidth, they do not always outperform mean smoothers.
基于自举法的非参数曲线和谱密度置信带估计
我们考虑了利用非参数曲线估计器对周期图进行谱密度估计的全局带宽优化和置信区间估计问题。使用局部二次回归平滑器作为一种可能的方法来减少经典核谱密度估计中固有的偏差,这是简单的局部平均回归平滑器。我们发现,虽然二次平滑对带宽的糟糕选择不那么敏感,但它们并不总是优于平均平滑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信