Similar Handwritten Chinese Characters Recognition by Critical Region Selection Based on Average Symmetric Uncertainty

Bo Xu, Kaizhu Huang, Cheng-Lin Liu
{"title":"Similar Handwritten Chinese Characters Recognition by Critical Region Selection Based on Average Symmetric Uncertainty","authors":"Bo Xu, Kaizhu Huang, Cheng-Lin Liu","doi":"10.1109/ICFHR.2010.87","DOIUrl":null,"url":null,"abstract":"We consider the problem of similar Chinese character recognition in this paper. Engaging the Average Symmetric Uncertainty (ASU) criterion to measure the correlation between different image regions and the class label, we manage to detect the most critical regions for each pair of similar characters. These critical regions are proved to contain more discriminative information and hence can largely benefit the classification accuracy for similar characters. We conduct a series of experiments on the CASIA Chinese character data set. Experimental results show that our proposed method is superior to three competitive approaches in terms of both accuracy and efficiency.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"132 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We consider the problem of similar Chinese character recognition in this paper. Engaging the Average Symmetric Uncertainty (ASU) criterion to measure the correlation between different image regions and the class label, we manage to detect the most critical regions for each pair of similar characters. These critical regions are proved to contain more discriminative information and hence can largely benefit the classification accuracy for similar characters. We conduct a series of experiments on the CASIA Chinese character data set. Experimental results show that our proposed method is superior to three competitive approaches in terms of both accuracy and efficiency.
基于平均对称不确定性的关键区域选择相似手写体汉字识别
本文主要研究相似汉字识别问题。利用平均对称不确定性(ASU)准则来衡量不同图像区域与类标签之间的相关性,我们设法检测每对相似字符的最关键区域。这些关键区域包含更多的判别信息,因此对相似字符的分类精度有很大的帮助。我们在CASIA汉字数据集上进行了一系列的实验。实验结果表明,该方法在精度和效率方面都优于其他三种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信