W. Cai, Ganglei He, Jianlong Hu, Haiyan Zhao, Yuhai Wang, B. Gao
{"title":"A comprehensive intention prediction method considering vehicle interaction","authors":"W. Cai, Ganglei He, Jianlong Hu, Haiyan Zhao, Yuhai Wang, B. Gao","doi":"10.1109/CVCI51460.2020.9338520","DOIUrl":null,"url":null,"abstract":"In this paper, an interactive intention prediction method is proposed. Firstly, the Hidden Markov Model integrated with Gaussian Mixture Model is modeled for current behavior recognition and its parameters are trained through NGSIM dataset. Then, a trajectory prediction method based on Frenet frame is used to predict the future traffic situation, considering which future behavior reasoning is realized by maximum expected utility theory. The final intention prediction result is a combination of historical trajectory recognition and future behavior reasoning. The simulation results show that the proposed method has the ability of reasonably reflecting the interaction process between vehicles and the prediction performance is good.","PeriodicalId":119721,"journal":{"name":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVCI51460.2020.9338520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this paper, an interactive intention prediction method is proposed. Firstly, the Hidden Markov Model integrated with Gaussian Mixture Model is modeled for current behavior recognition and its parameters are trained through NGSIM dataset. Then, a trajectory prediction method based on Frenet frame is used to predict the future traffic situation, considering which future behavior reasoning is realized by maximum expected utility theory. The final intention prediction result is a combination of historical trajectory recognition and future behavior reasoning. The simulation results show that the proposed method has the ability of reasonably reflecting the interaction process between vehicles and the prediction performance is good.