Supporting MPI-distributed stream parallel patterns in GrPPI

Javier Fernández Muñoz, M. F. Dolz, David del Rio Astorga, Javier Prieto Cepeda, José Daniel García Sánchez
{"title":"Supporting MPI-distributed stream parallel patterns in GrPPI","authors":"Javier Fernández Muñoz, M. F. Dolz, David del Rio Astorga, Javier Prieto Cepeda, José Daniel García Sánchez","doi":"10.1145/3236367.3236380","DOIUrl":null,"url":null,"abstract":"In the recent years, the large volumes of stream data and the near real-time requirements of data streaming applications have exacerbated the need for new scalable algorithms and programming interfaces for distributed and shared-memory platforms. To contribute in this direction, this paper presents a new distributed MPI back end for GrPPI, a C++ high-level generic interface of data-intensive and stream processing parallel patterns. This back end, as a new execution policy, supports the distributed and hybrid (distributed and shared-memory) parallel execution of the Pipeline and Farm patterns, where the hybrid mode combines the MPI policy with a GrPPI shared-memory one. A detailed analysis of the GrPPI MPI execution policy reports considerable benefits from the programmability, flexibility and readability points of view. The experimental evaluation on a streaming application with different distributed and shared-memory scenarios reports considerable performance gains with respect to the sequential versions at the expense of negligible GrPPI overheads.","PeriodicalId":225539,"journal":{"name":"Proceedings of the 25th European MPI Users' Group Meeting","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3236367.3236380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the recent years, the large volumes of stream data and the near real-time requirements of data streaming applications have exacerbated the need for new scalable algorithms and programming interfaces for distributed and shared-memory platforms. To contribute in this direction, this paper presents a new distributed MPI back end for GrPPI, a C++ high-level generic interface of data-intensive and stream processing parallel patterns. This back end, as a new execution policy, supports the distributed and hybrid (distributed and shared-memory) parallel execution of the Pipeline and Farm patterns, where the hybrid mode combines the MPI policy with a GrPPI shared-memory one. A detailed analysis of the GrPPI MPI execution policy reports considerable benefits from the programmability, flexibility and readability points of view. The experimental evaluation on a streaming application with different distributed and shared-memory scenarios reports considerable performance gains with respect to the sequential versions at the expense of negligible GrPPI overheads.
在GrPPI中支持mpi分布式流并行模式
近年来,大量的流数据和数据流应用的近实时需求加剧了对分布式和共享内存平台的新可扩展算法和编程接口的需求。为了在这个方向上有所贡献,本文提出了一个新的分布式MPI后端GrPPI,一个数据密集型和流处理并行模式的c++高级通用接口。作为一种新的执行策略,该后端支持Pipeline和Farm模式的分布式和混合(分布式和共享内存)并行执行,其中混合模式将MPI策略与GrPPI共享内存策略结合在一起。对GrPPI MPI执行策略的详细分析显示,从可编程性、灵活性和可读性的角度来看,GrPPI MPI执行策略带来了相当大的好处。对具有不同分布式和共享内存场景的流应用程序的实验评估报告了相对于顺序版本的相当大的性能提升,而代价是可以忽略不计的GrPPI开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信