On LP decoding of polar codes

Naveen Goela, S. B. Korada, M. Gastpar
{"title":"On LP decoding of polar codes","authors":"Naveen Goela, S. B. Korada, M. Gastpar","doi":"10.1109/CIG.2010.5592698","DOIUrl":null,"url":null,"abstract":"Polar codes are the first codes to provably achieve capacity on the symmetric binary-input discrete memoryless channel (B-DMC) with low encoding and decoding complexity. The parity check matrix of polar codes is high-density and we show that linear program (LP) decoding fails on the fundamental polytope of the parity check matrix. The recursive structure of the code permits a sparse factor graph representation. We define a new polytope based on the fundamental polytope of the sparse graph representation. This new polytope P is defined in a space of dimension O(N logN) where N is the block length. We prove that the projection of P in the original space is tighter than the fundamental polytope based on the parity check matrix. The LP decoder over P obtains the ML-certificate property. In the case of the binary erasure channel (BEC), the new LP decoder is equivalent to the belief propagation (BP) decoder operating on the sparse factor graph representation, and hence achieves capacity. Simulation results of SC (successive cancelation) decoding, LP decoding over tightened polytopes, and (ML) maximum likelihood decoding are provided. For channels other than the BEC, we discuss why LP decoding over P with a linear objective function is insufficient.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"43 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592698","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

Abstract

Polar codes are the first codes to provably achieve capacity on the symmetric binary-input discrete memoryless channel (B-DMC) with low encoding and decoding complexity. The parity check matrix of polar codes is high-density and we show that linear program (LP) decoding fails on the fundamental polytope of the parity check matrix. The recursive structure of the code permits a sparse factor graph representation. We define a new polytope based on the fundamental polytope of the sparse graph representation. This new polytope P is defined in a space of dimension O(N logN) where N is the block length. We prove that the projection of P in the original space is tighter than the fundamental polytope based on the parity check matrix. The LP decoder over P obtains the ML-certificate property. In the case of the binary erasure channel (BEC), the new LP decoder is equivalent to the belief propagation (BP) decoder operating on the sparse factor graph representation, and hence achieves capacity. Simulation results of SC (successive cancelation) decoding, LP decoding over tightened polytopes, and (ML) maximum likelihood decoding are provided. For channels other than the BEC, we discuss why LP decoding over P with a linear objective function is insufficient.
极性码的LP译码
极性码是第一个可以在对称二进制输入离散无记忆信道(B-DMC)上实现低编码和解码复杂度的码。极性码的奇偶校验矩阵是高密度的,我们证明了线性程序(LP)译码在奇偶校验矩阵的基本多边形上是失败的。代码的递归结构允许稀疏因子图表示。我们在稀疏图表示的基本多面体的基础上定义了一个新的多面体。这个新的多面体P定义在维数为O(N logN)的空间中,其中N为块长度。在奇偶校验矩阵的基础上证明了P在原空间中的投影比基本多面体更紧。P上的LP解码器获得ml证书属性。在二进制擦除信道(BEC)的情况下,新的LP解码器等效于基于稀疏因子图表示的信念传播(BP)解码器,从而实现了容量。给出了SC(连续消除)译码、LP(紧绷多面体)译码和(ML)最大似然译码的仿真结果。对于除BEC以外的信道,我们讨论了为什么LP解码在P上具有线性目标函数是不够的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信