Designing of Beta Basis Function Neural Network for optimization using cuckoo search (CS)

Habib Dhahri, A. Alimi, A. Abraham
{"title":"Designing of Beta Basis Function Neural Network for optimization using cuckoo search (CS)","authors":"Habib Dhahri, A. Alimi, A. Abraham","doi":"10.1109/HIS.2014.7086182","DOIUrl":null,"url":null,"abstract":"In this paper, we apply the Beta Basis Function Neural Network (BBFNN) trained with cuckoo search (CS) for time series predictions. The cuckoo search algorithm optimizes the network parameters. In order to evaluate the effectiveness of the proposed method, we have carried out some experiments on four data sets: Mackey Glass, Lorenz attractor, Henon map and Box-Jenkins. We give also simulation examples to compare the effectiveness of the model with the other known methods in the literature. The results show that the CS-BBFNN model produces a better generalization performance.","PeriodicalId":161103,"journal":{"name":"2014 14th International Conference on Hybrid Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 14th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2014.7086182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we apply the Beta Basis Function Neural Network (BBFNN) trained with cuckoo search (CS) for time series predictions. The cuckoo search algorithm optimizes the network parameters. In order to evaluate the effectiveness of the proposed method, we have carried out some experiments on four data sets: Mackey Glass, Lorenz attractor, Henon map and Box-Jenkins. We give also simulation examples to compare the effectiveness of the model with the other known methods in the literature. The results show that the CS-BBFNN model produces a better generalization performance.
基于布谷鸟搜索优化的β基函数神经网络设计
在本文中,我们应用布谷鸟搜索(CS)训练的β基函数神经网络(BBFNN)进行时间序列预测。布谷鸟搜索算法优化网络参数。为了评估所提出方法的有效性,我们在四个数据集上进行了实验:Mackey Glass、Lorenz吸引子、Henon map和Box-Jenkins。我们还给出了仿真实例,以比较该模型与文献中其他已知方法的有效性。结果表明,CS-BBFNN模型具有较好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信