AdaptiveGCN

Dongyue Li, Tao Yang, Lun Du, Zhezhi He, Li Jiang
{"title":"AdaptiveGCN","authors":"Dongyue Li, Tao Yang, Lun Du, Zhezhi He, Li Jiang","doi":"10.1145/3459637.3482049","DOIUrl":null,"url":null,"abstract":"Graph Convolutional Networks (GCNs) have become the prevailing approach to efficiently learn representations from graph-structured data. Current GCN models adopt a neighborhood aggregation mechanism based on two primary operations, aggregation and combination. The workload of these two processes is determined by the input graph structure, making the graph input the bottleneck of processing GCN. Meanwhile, a large amount of task-irrelevant information in the graphs would hurt the model generalization performance. This brings the opportunity of studying how to remove the redundancy in the graphs. In this paper, we aim to accelerate GCN models by removing the task-irrelevant edges in the graph. We present AdaptiveGCN, an efficient and supervised graph sparsification framework. AdaptiveGCN adopts an edge predictor module to get edge selection strategies by learning the downstream task feedback signals for each GCN layer separately and adaptively in the training stage, then only inference with the selected edges in the test stage to speed up the GCN computation. The experimental results indicate that AdaptiveGCN could yield 43% (on CPU) and 39% (on GPU) GCN model speed-up averagely with comparable model performance on public graph learning benchmarks.","PeriodicalId":405296,"journal":{"name":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 30th ACM International Conference on Information & Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3459637.3482049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Graph Convolutional Networks (GCNs) have become the prevailing approach to efficiently learn representations from graph-structured data. Current GCN models adopt a neighborhood aggregation mechanism based on two primary operations, aggregation and combination. The workload of these two processes is determined by the input graph structure, making the graph input the bottleneck of processing GCN. Meanwhile, a large amount of task-irrelevant information in the graphs would hurt the model generalization performance. This brings the opportunity of studying how to remove the redundancy in the graphs. In this paper, we aim to accelerate GCN models by removing the task-irrelevant edges in the graph. We present AdaptiveGCN, an efficient and supervised graph sparsification framework. AdaptiveGCN adopts an edge predictor module to get edge selection strategies by learning the downstream task feedback signals for each GCN layer separately and adaptively in the training stage, then only inference with the selected edges in the test stage to speed up the GCN computation. The experimental results indicate that AdaptiveGCN could yield 43% (on CPU) and 39% (on GPU) GCN model speed-up averagely with comparable model performance on public graph learning benchmarks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信