Linked crowdsourced data - Enabling location analytics in the linking open data cloud

A. Uzun
{"title":"Linked crowdsourced data - Enabling location analytics in the linking open data cloud","authors":"A. Uzun","doi":"10.1109/ICOSC.2015.7050776","DOIUrl":null,"url":null,"abstract":"Geospatial datasets in the Linking Open Data (LOD) Cloud are rather of static nature and mainly consist of information such as a name, geo coordinates, an address, or opening hours. There is no linked dataset providing dynamic information about the “popularity” of certain places or the “Visiting frequency” of users in specific contextual situations. This type of information within the LOD Cloud, however, would enable a variety of new applications based on semantically enriched location analytics. In this paper, we present Linked Crowdsourced Data as a dataset, which links real user location preferences (e.g., check-ins, ratings, or comments) as well as specific context situations (e.g., weather conditions, holiday information, or measured networks) collected via crowdsourcing to static location data. We showcase the applicability of this dataset for location analytics use cases through a map visualization and highlight its added value with exemplary SPARQL queries that allow for location requests depending on historic context information.","PeriodicalId":126701,"journal":{"name":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","volume":"2014 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 IEEE 9th International Conference on Semantic Computing (IEEE ICSC 2015)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2015.7050776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Geospatial datasets in the Linking Open Data (LOD) Cloud are rather of static nature and mainly consist of information such as a name, geo coordinates, an address, or opening hours. There is no linked dataset providing dynamic information about the “popularity” of certain places or the “Visiting frequency” of users in specific contextual situations. This type of information within the LOD Cloud, however, would enable a variety of new applications based on semantically enriched location analytics. In this paper, we present Linked Crowdsourced Data as a dataset, which links real user location preferences (e.g., check-ins, ratings, or comments) as well as specific context situations (e.g., weather conditions, holiday information, or measured networks) collected via crowdsourcing to static location data. We showcase the applicability of this dataset for location analytics use cases through a map visualization and highlight its added value with exemplary SPARQL queries that allow for location requests depending on historic context information.
链接的众包数据——在链接的开放数据云中启用位置分析
链接开放数据(LOD)云中的地理空间数据集是静态的,主要由名称、地理坐标、地址或开放时间等信息组成。没有关联的数据集提供关于某些地方的“受欢迎程度”或特定情境下用户的“访问频率”的动态信息。然而,LOD Cloud中的这种类型的信息将支持基于语义丰富的位置分析的各种新应用程序。在本文中,我们将链接众包数据作为一个数据集,它将通过众包收集的真实用户位置偏好(例如,签到,评级或评论)以及特定上下文情况(例如,天气条件,假日信息或测量网络)与静态位置数据联系起来。我们通过地图可视化展示了该数据集对位置分析用例的适用性,并通过SPARQL查询突出了它的附加价值,SPARQL查询允许根据历史上下文信息进行位置请求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信