A Chaotic Dynamic Congestion Prediction Method under the Space-Terrestrial Integrated Network

Hua Qu, Chang-feng Wei, X. Yuan, Ji-hong Zhao
{"title":"A Chaotic Dynamic Congestion Prediction Method under the Space-Terrestrial Integrated Network","authors":"Hua Qu, Chang-feng Wei, X. Yuan, Ji-hong Zhao","doi":"10.1109/icccs55155.2022.9846732","DOIUrl":null,"url":null,"abstract":"The space-terrestrial integrated network is an important research field of the future network. The dynamic and heterogeneous nature of the space-terrestrial integrated network brings challenges to the research of congestion prediction methods. In this paper, we propose a chaotic dynamic congestion prediction method under the space-terrestrial integrated network, which solves the problems of insufficient dynamics and low accuracy of the existing congestion prediction methods for the space-terrestrial integrated network. The chaotic dynamic congestion prediction method is to predict the time series by using the GRU neural network model of the improved particle swarm algorithm to optimize the parameters after wavelet analysis. The experimental results show that the prediction accuracy of the chaotic dynamic congestion prediction method is higher, and it is more suitable for the space-terrestrial integrated network.","PeriodicalId":121713,"journal":{"name":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icccs55155.2022.9846732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The space-terrestrial integrated network is an important research field of the future network. The dynamic and heterogeneous nature of the space-terrestrial integrated network brings challenges to the research of congestion prediction methods. In this paper, we propose a chaotic dynamic congestion prediction method under the space-terrestrial integrated network, which solves the problems of insufficient dynamics and low accuracy of the existing congestion prediction methods for the space-terrestrial integrated network. The chaotic dynamic congestion prediction method is to predict the time series by using the GRU neural network model of the improved particle swarm algorithm to optimize the parameters after wavelet analysis. The experimental results show that the prediction accuracy of the chaotic dynamic congestion prediction method is higher, and it is more suitable for the space-terrestrial integrated network.
天地一体网下混沌动态拥塞预测方法
天地一体化网络是未来网络的一个重要研究领域。地空综合网络的动态性和异构性给拥塞预测方法的研究带来了挑战。本文提出了一种空地融合网络下的混沌动态拥塞预测方法,解决了现有空地融合网络拥塞预测方法动态性不足、精度低的问题。混沌动态拥塞预测方法是在小波分析后,利用改进粒子群算法的GRU神经网络模型对时间序列进行预测,对参数进行优化。实验结果表明,混沌动态拥塞预测方法的预测精度较高,更适合于空地一体化网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信