Searching for the Most Probable Combination of Class Labels Using Etcetera Abduction

A. Gordon, Andrew Feng
{"title":"Searching for the Most Probable Combination of Class Labels Using Etcetera Abduction","authors":"A. Gordon, Andrew Feng","doi":"10.1109/CISS56502.2023.10089729","DOIUrl":null,"url":null,"abstract":"Many machine perception tasks require a trained model to assign class labels to multiple entities in the same context, e.g., labeling multiple objects in a single photograph. In these tasks, different combinations of labels may be more likely than others, e.g., when co-occurrence biases are considered, such that the most-confident label assigned to an individual object is not always the best choice. In this paper, we propose a new method for combining evidence from multiple class probability distributions to identify the most probable combination of labels in multi-entity contexts. Our method encodes discrete class probability distributions as literals in first-order logic, and uses probability-ranked logical abduction to identify the most likely label combination, incorporating the prior and conditional probabilities of each label. We evaluate our method on two computer vision benchmarks, first for labeling common objects in photographs of everyday contexts, and second for labeling actions of athletes in sports videos. Results indicate significant gains in classifier accuracy over systems that merely select the model's most confident class label.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many machine perception tasks require a trained model to assign class labels to multiple entities in the same context, e.g., labeling multiple objects in a single photograph. In these tasks, different combinations of labels may be more likely than others, e.g., when co-occurrence biases are considered, such that the most-confident label assigned to an individual object is not always the best choice. In this paper, we propose a new method for combining evidence from multiple class probability distributions to identify the most probable combination of labels in multi-entity contexts. Our method encodes discrete class probability distributions as literals in first-order logic, and uses probability-ranked logical abduction to identify the most likely label combination, incorporating the prior and conditional probabilities of each label. We evaluate our method on two computer vision benchmarks, first for labeling common objects in photographs of everyday contexts, and second for labeling actions of athletes in sports videos. Results indicate significant gains in classifier accuracy over systems that merely select the model's most confident class label.
使用等等溯因法搜索类标签的最可能组合
许多机器感知任务需要经过训练的模型为同一上下文中的多个实体分配类标签,例如,在一张照片中标记多个对象。在这些任务中,不同的标签组合可能比其他组合更有可能出现,例如,当考虑到共发生偏差时,分配给单个对象的最自信的标签并不总是最佳选择。在本文中,我们提出了一种新的方法来组合来自多个类别概率分布的证据来识别多实体上下文中最可能的标签组合。我们的方法将离散类概率分布编码为一阶逻辑中的字面量,并使用概率排序逻辑溯因来识别最可能的标签组合,结合每个标签的先验概率和条件概率。我们在两个计算机视觉基准上评估了我们的方法,首先用于标记日常背景照片中的常见物体,其次用于标记体育视频中运动员的动作。结果表明,与仅选择模型最自信的类标签的系统相比,分类器准确性有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信