Codebase release 0.1 for infstat

K. Kong, Konstantin T. Matchev, S. Mrenna, Prasanth Shyamsundar
{"title":"Codebase release 0.1 for infstat","authors":"K. Kong, Konstantin T. Matchev, S. Mrenna, Prasanth Shyamsundar","doi":"10.21468/scipostphyscodeb.14-r0.1","DOIUrl":null,"url":null,"abstract":"We propose an intuitive, machine-learning approach to multiparameter inference, dubbed the InferoStatic Networks (ISN) method, to model the score and likelihood ratio estimators in cases when the probability density can be sampled but not computed directly. The ISN uses a backend neural network that models a scalar function called the inferostatic potential \\varphiφ. In addition, we introduce new strategies, respectively called Kernel Score Estimation (KSE) and Kernel Likelihood Ratio Estimation (KLRE), to learn the score and the likelihood ratio functions from simulated data. We illustrate the new techniques with some toy examples and compare to existing approaches in the literature. We mention en passant some new loss functions that optimally incorporate latent information from simulations into the training procedure.","PeriodicalId":430271,"journal":{"name":"SciPost Physics Codebases","volume":"59 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SciPost Physics Codebases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/scipostphyscodeb.14-r0.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose an intuitive, machine-learning approach to multiparameter inference, dubbed the InferoStatic Networks (ISN) method, to model the score and likelihood ratio estimators in cases when the probability density can be sampled but not computed directly. The ISN uses a backend neural network that models a scalar function called the inferostatic potential \varphiφ. In addition, we introduce new strategies, respectively called Kernel Score Estimation (KSE) and Kernel Likelihood Ratio Estimation (KLRE), to learn the score and the likelihood ratio functions from simulated data. We illustrate the new techniques with some toy examples and compare to existing approaches in the literature. We mention en passant some new loss functions that optimally incorporate latent information from simulations into the training procedure.
Codebase release 0.1 for infstat
我们提出了一种直观的机器学习方法来进行多参数推理,称为interostatic Networks (ISN)方法,用于在概率密度可以采样但不能直接计算的情况下对分数和似然比估计器进行建模。ISN使用了一个后端神经网络,该网络模拟了一个称为静态电位\varphiφ的标量函数。此外,我们引入了新的策略,分别称为核分数估计(KSE)和核似然比估计(KLRE),从模拟数据中学习分数和似然比函数。我们用一些简单的例子来说明这些新技术,并与文献中现有的方法进行比较。我们顺便提到了一些新的损失函数,它们将模拟的潜在信息最优地纳入训练过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信