DECO

Khashayar Kamran, E. Yeh, Qian Ma
{"title":"DECO","authors":"Khashayar Kamran, E. Yeh, Qian Ma","doi":"10.1145/3323679.3326509","DOIUrl":null,"url":null,"abstract":"The emergence of IoT devices and the predicted increase in the number of data-driven and delay-sensitive applications highlight the importance of dispersed computing platforms (e.g. edge computing and fog computing) that can intelligently manage in-network computation and data placement. In this paper, we propose the DECO (Data-cEntric COmputation) framework for joint computation, caching, and request forwarding in data-centric computing networks. DECO utilizes a virtual control plane which operates on the demand rates for computation and data, and an actual plane which handles computation requests, data requests, data objects and computation results in the physical network. We present a throughput optimal policy within the virtual plane, and use it as a basis for adaptive and distributed computation, caching, and request forwarding in the actual plane. We demonstrate the superior performance of the DECO policy in terms of request satisfaction delay as compared with several baseline policies, through extensive numerical simulations over multiple network topologies.","PeriodicalId":205641,"journal":{"name":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Twentieth ACM International Symposium on Mobile Ad Hoc Networking and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3323679.3326509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of IoT devices and the predicted increase in the number of data-driven and delay-sensitive applications highlight the importance of dispersed computing platforms (e.g. edge computing and fog computing) that can intelligently manage in-network computation and data placement. In this paper, we propose the DECO (Data-cEntric COmputation) framework for joint computation, caching, and request forwarding in data-centric computing networks. DECO utilizes a virtual control plane which operates on the demand rates for computation and data, and an actual plane which handles computation requests, data requests, data objects and computation results in the physical network. We present a throughput optimal policy within the virtual plane, and use it as a basis for adaptive and distributed computation, caching, and request forwarding in the actual plane. We demonstrate the superior performance of the DECO policy in terms of request satisfaction delay as compared with several baseline policies, through extensive numerical simulations over multiple network topologies.
德科
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信