{"title":"Label-free Biomolecular Sensing by SERS on Nanoporous Gold Nanoparticle Arrays","authors":"Wei-Chuan Shih, F. Zhao, Masud Arnob","doi":"10.1109/NANO.2018.8626233","DOIUrl":null,"url":null,"abstract":"We review our recent progress in surface-enhanced Raman scattering (SERS) biomolecular sensing on substrate-bound nanoporous gold (NPG) nanoparticles arrays which feature large surface area, tunable plasmonics, and high-density localization of enhanced electric field. This type of SERS substrate has been shown to provide superior performance in terms of ultrahigh sensitivity and reliable specificity for robust detection.","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We review our recent progress in surface-enhanced Raman scattering (SERS) biomolecular sensing on substrate-bound nanoporous gold (NPG) nanoparticles arrays which feature large surface area, tunable plasmonics, and high-density localization of enhanced electric field. This type of SERS substrate has been shown to provide superior performance in terms of ultrahigh sensitivity and reliable specificity for robust detection.